递归实现n皇后问题-阿里云开发者社区

开发者社区> 人工智能> 正文
登录阅读全文

递归实现n皇后问题

简介: a数组代表列冲突,从a[0]~a[7]代表第0列到第7列。如果某列上已经有皇后,则为1,否则为0。 数组b代表主对角线冲突,为b[i-j+7],即从b[0]~b[14]。

a数组代表列冲突,从a[0]~a[7]代表第0列到第7列。如果某列上已经有皇后,则为1,否则为0

数组b代表主对角线冲突,为b[i-j+7],即从b[0]~b[14]。如果某条主对角线上已经有皇后,则为1,否则为0

数组c代表从对角线冲突,为c[i+j],即从c[0]~c[14]。如果某条从对角线上已经有皇后,则为1,否则为0

#include <stdio.h>
static char Queen[8][8];
static int a[8];
static int b[15];
static int c[15];
static int iQueenNum=0; //记录总的棋盘状态数
void qu(int i);     //参数i代表行
int main()
{
 int iLine,iColumn;
 //棋盘初始化,空格为*,放置皇后的地方为@
 for(iLine=0;iLine<8;iLine++)
 {
    a[iLine]=0; //列标记初始化,表示无列冲突
    for(iColumn=0;iColumn<8;iColumn++)
      Queen[iLine][iColumn]='*';
 }
//主、从对角线标记初始化,表示没有冲突
 for(iLine=0;iLine<15;iLine++)
    b[iLine]=c[iLine]=0;
    qu(0);
 return 0;

}

void qu(int i)
{
 int iColumn;
 for(iColumn=0;iColumn<8;iColumn++)
 {
    if(a[iColumn]==0&&b[i-iColumn+7]==0&&c[i+iColumn]==0)
    //如果无冲突

    {

      Queen[i][iColumn]='@'; //放皇后

      a[iColumn]=1;           //标记,下一次该列上不能放皇后

      b[i-iColumn+7]=1;       //标记,下一次该主对角线上不能放皇后

      c[i+iColumn]=1;             //标记,下一次该从对角线上不能放皇后

      if(i<7) qu(i+1);        //如果行还没有遍历完,进入下一行

      else //否则输出

      {

        //输出棋盘状态

        int iLine,iColumn;

        printf("第%d种状态为:\n",++iQueenNum);

        for(iLine=0;iLine<8;iLine++)

        {

          for(iColumn=0;iColumn<8;iColumn++)

            printf("%c ",Queen[iLine][iColumn]);

          printf("\n");

        }

        printf("\n\n");

      }

      //如果前次的皇后放置导致后面的放置无论如何都不能满足要求,则回溯,重置

      Queen[i][iColumn]='*';

      a[iColumn]=0;

      b[i-iColumn+7]=0;

      c[i+iColumn]=0;

    }

 }
}

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
人工智能
使用钉钉扫一扫加入圈子
+ 订阅

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

其他文章