Spark

简介:   Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理、图技术、机器学习、NoSQL查询等方面的所有核心问题,具有完善的生态系统,这直接奠定了其一统云计算大数据领域的霸主地位;要想成为Spark高手,需要经历一下阶段:第一阶段:熟练的掌握Scala语言1, Spark框架是采用Scala语言编写的,精致而优雅。
  Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理、图技术、机器学习、NoSQL查询等方面的所有核心问题,具有完善的生态系统,这直接奠定了其一统云计算大数据领域的霸主地位;

要想成为Spark高手,需要经历一下阶段:

第一阶段:熟练的掌握Scala语言
1, Spark框架是采用Scala语言编写的,精致而优雅。要想成为Spark高手,你就必须阅读Spark的源代码,就必须掌握Scala,;
2, 虽然说现在的Spark可以采用多语言Java、Python等进行应用程序开发,但是最快速的和支持最好的开发API依然并将永远是Scala方式的API,所以你必须掌握Scala来编写复杂的和高性能的Spark分布式程序;
3, 尤其要熟练掌握Scala的trait、apply、函数式编程、泛型、逆变与协变等;

第二阶段:精通Spark平台本身提供给开发者API

1, 掌握Spark中面向RDD的开发模式,掌握各种transformation和action函数的使用;
2, 掌握Spark中的宽依赖和窄依赖以及lineage机制;
3, 掌握RDD的计算流程,例如Stage的划分、Spark应用程序提交给集群的基本过程和Worker节点基础的工作原理等

第三阶段:深入Spark内核
此阶段主要是通过Spark框架的源码研读来深入Spark内核部分:
1, 通过源码掌握Spark的任务提交过程;
2, 通过源码掌握Spark集群的任务调度;
3, 尤其要精通DAGScheduler、TaskScheduler和Worker节点内部的工作的每一步的细节;

第四阶级:掌握基于Spark上的核心框架的使用
Spark作为云计算大数据时代的集大成者,在实时流处理、图技术、机器学习、NoSQL查询等方面具有显著的优势,我们使用Spark的时候大部分时间都是在使用其上的框架例如Shark、Spark Streaming等:
1, Spark Streaming是非常出色的实时流处理框架,要掌握其DStream、transformation和checkpoint等;
2, Spark的离线统计分析功能,Spark 1.0.0版本在Shark的基础上推出了Spark SQL,离线统计分析的功能的效率有显著的提升,需要重点掌握;
3, 对于Spark的机器学习和GraphX等要掌握其原理和用法;

第五阶级:做商业级别的Spark项目
通过一个完整的具有代表性的Spark项目来贯穿Spark的方方面面,包括项目的架构设计、用到的技术的剖析、开发实现、运维等,完整掌握其中的每一个阶段和细节,这样就可以让您以后可以从容面对绝大多数Spark项目。
第六阶级:提供Spark解决方案
1, 彻底掌握Spark框架源码的每一个细节;
2, 根据不同的业务场景的需要提供Spark在不同场景的下的解决方案;
3, 根据实际需要,在Spark框架基础上进行二次开发,打造自己的Spark框架;

前面所述的成为Spark高手的六个阶段中的第一和第二个阶段可以通过自学逐步完成,随后的三个阶段最好是由高手或者专家的指引下一步步完成,最后一个阶段,基本上就是到”无招胜有招”的时期,很多东西要用心领悟才能完成。
目录
相关文章
|
3月前
|
SQL 机器学习/深度学习 分布式计算
Spark适合处理哪些任务?
【9月更文挑战第1天】Spark适合处理哪些任务?
194 3
|
3月前
|
SQL 分布式计算 Hadoop
初识 Spark
【9月更文挑战第1天】. 初识 Spark
57 2
|
7月前
|
存储 缓存 分布式计算
spark BlockManager粗讲
spark BlockManager粗讲
|
消息中间件 分布式计算 监控
Spark6:Spark Steaming
Spark6:Spark Steaming
66 0
|
SQL 分布式计算 资源调度
|
SQL 机器学习/深度学习 分布式计算
【Spark】(一)初识 Spark
【Spark】(一)初识 Spark
169 0
【Spark】(一)初识 Spark
|
存储 机器学习/深度学习 缓存
五分钟零基础介绍 spark
相信大家都听说过火的不能再火、炒得不能再炒的新一代大数据处理框架 Spark. 那么 Spark 是何方神圣?为何大有取代 Hadoop 的势头?Spark 内部又是如何工作的呢?我们会用几篇文章为大家一一介绍。 Hadoop:我不想知道我是怎么来的,我就想知道我是怎么没的? 还是从 Hadoop 处理海量数据的架构说起,一个 Hadoop job 通常都是这样的: 从 HDFS 读取输入数据; 在 Map 阶段使用用户定义的 mapper function, 然后把结果写入磁盘; 在 Reduce 阶段,从各个处于 Map 阶段的机器中读取 Map 计算的中间结果,使用用户定义的 r
139 0
|
分布式计算 Kubernetes Spark
Spark on k8s
前言 Spark 自从2.3版本以来就支持运行在k8s上,本文主要介绍如何运行Spark在阿里云容器服务-Kubernetes。 前提条件 1、 已经购买阿里云容器服务-Kubernetes。购买链接:Kubernetes控制台。
3067 0
|
SQL 分布式计算 大数据
初学Spark
介绍大数据处理引擎Spark的特点,以及它的技术栈
2149 0