Spark-zeppelin大数据可视化导入Mysql

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: Zeppelin是基于spark的数据可视化方案。支持scala语言,任何在spark上运行的job都可以在此平台上运行,此外支持对表数据的可视化。对数据源的可视化可以通过interpreter进行扩展,比如github中就有支持MySQL的interpreter。

Zeppelin是基于spark的数据可视化方案。支持scala语言,任何在spark上运行的job都可以在此平台上运行,此外支持对表数据的可视化。对数据源的可视化可以通过interpreter进行扩展,比如github中就有支持MySQL的interpreter。

下面着重介绍zeppelin notebook中代码书写:

scala:使用此interpreter的好处是,可以将各个数据源的数据在同一张视图中进行展示。比如以下是对mysql,hive数据的混合展示:

Load mysql表,并注册为spark sqlContext同样的表名:

import java.util.Properties
val properties = new Properties()
val url = "..."
properties.put("user", "...")
properties.put("password", "...")
properties.put("driver", "com.mysql.jdbc.Driver")
val tables = "...,..."
tables.split(",").foreach{mysql_table => 
sqlContext.read.jdbc(url, mysql_table, properties).registerTempTable(mysql_table)
}

Hive数据可以直接进行load:

sql(s"""
  SELECT
  ...
  FROM table where ...""").registerTempTable("hive_table")

对mysql,hive表进行混合查询,支持下拉框:

sql(""select ... from """
 + 
z.select("数据源", Seq(("""mysql_table1""","mysql table1数据"),
                 ("""mysql_table2""","mysql table2数据"),
                 ("""hive_table""","hive数据")))
 + """ where ...""").registerTempTable("result")

效果:


scala中可以使用以下方式对dataframe数据进行展示:
val result = sql("select * from result").rdd.map { r => r.mkString("\t") }.collect().mkString("\n")
println("%table dt\tvalue\n" + result)

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
2月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
本文探讨Java大数据可视化在城市空气质量监测与污染溯源中的创新应用,结合多源数据采集、实时分析与GIS技术,助力环保决策,提升城市空气质量管理水平。
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
|
2月前
|
存储 数据可视化 数据挖掘
基于大数据的电影可视化、推荐与票房预测系统
本系统基于Python与Flask框架,结合Echarts等技术,实现电影数据的采集、存储与可视化展示。通过对票房、评分、评论等数据的分析,生成图表与词云,帮助用户直观理解电影市场趋势,支持决策制定与观影推荐,提升电影行业的数据分析能力与用户体验。
|
3月前
|
存储 监控 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
|
6月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
5月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
305 0
|
2月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
2月前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。

热门文章

最新文章

推荐镜像

更多
下一篇
oss云网关配置