FCN

简介: 【论文信息】 《Fully Convolutional Networks for Semantic Segmentation》 CVPR 2015 best paper key word: pixel level, fully supervised, CNN 【方法简介】 主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation。

【论文信息】

《Fully Convolutional Networks for Semantic Segmentation》

CVPR 2015 best paper

key word: pixel level, fully supervised, CNN

【方法简介】

主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation。    

 我们已经有一个CNN模型,首先要把CNN的全连接层看成是卷积层,卷积模板大小就是输入的特征map的大小,也就是说把全连接网络看成是对整张输入map做卷积,全连接层分别有4096个6*6的卷积核,4096个1*1的卷积核,1000个1*1的卷积核,如下图:


接下来就要对这1000个1*1的输出,做upsampling,得到1000个原图大小(如32*32)的输出,这些输出合并后,得到上图所示的heatmap。

【细节记录】

dense prediction

这里通过upsampling得到dense prediction,作者研究过3种方案:

1,shift-and-stitch:设原图与FCN所得输出图之间的降采样因子是f,那么对于原图的每个f*f的区域(不重叠),“shift the input x pixels to the right and y pixels down for every (x,y) ,0 < x,y < f." 把这个f*f区域对应的output作为此时区域中心点像素对应的output,这样就对每个f*f的区域得到了f^2个output,也就是每个像素都能对应一个output,所以成为了dense prediction。

2,filter rarefaction:就是放大CNN网络中的subsampling层的filter的尺寸,得到新的filter:


其中s是subsampling的滑动步长,这个新filter的滑动步长要设为1,这样的话,subsampling就没有缩小图像尺寸,最后可以得到dense prediction。

以上两种方法作者都没有采用,主要是因为这两种方法都是trad-off的,原因是:

对于第二种方法, 下采样的功能被减弱,使得更细节的信息能被filter看到,但是receptive fileds会相对变小,可能会损失全局信息,且会对卷积层引入更多运算。

对于第一种方法,虽然receptive fileds没有变小,但是由于原图被划分成f*f的区域输入网络,使得filters无法感受更精细的信息。

3,这里upsampling的操作可以看成是反卷积(deconvolutional),卷积运算的参数和CNN的参数一样是在训练FCN模型的过程中通过bp算法学习得到。

fusion prediction

以上是对CNN的结果做处理,得到了dense prediction,而作者在试验中发现,得到的分割结果比较粗糙,所以考虑加入更多前层的细节信息,也就是把倒数第几层的输出和最后的输出做一个fusion,实际上也就是加和:


这样就得到第二行和第三行的结果,实验表明,这样的分割结果更细致更准确。在逐层fusion的过程中,做到第三行再往下,结果又会变差,所以作者做到这里就停了。可以看到如上三行的对应的结果:


【实验设计】

1,对比3种性能较好的几种CNN:AlexNet, VGG16, GoogLeNet进行实验,选择VGG16

2,对比FCN-32s-fixed, FCN-32s, FCN-16s, FCN-8s,证明最好的dense prediction组合是8s

3,FCN-8s和state-of-the-art对比是最优的,R-CNN, SDS.   FCN-16s

4,FCN-16s和现有的一些工作对比,是最优的

5,FCN-32s和FCN-16s在RGB-D和HHA的图像数据集上,优于state-of-the-art

【总结】

优点

1,训练一个end-to-end的FCN模型,利用卷积神经网络的很强的学习能力,得到较准确的结果,以前的基于CNN的方法都是要对输入或者输出做一些处理,才能得到最终结果。

2,直接使用现有的CNN网络,如AlexNet, VGG16, GoogLeNet,只需在末尾加上upsampling,参数的学习还是利用CNN本身的反向传播原理,"whole image training is effective and efficient."

3,不限制输入图片的尺寸,不要求图片集中所有图片都是同样尺寸,只需在最后upsampling时按原图被subsampling的比例缩放回来,最后都会输出一张与原图大小一致的dense prediction map。

缺陷

根据论文的conclusion部分所示的实验输出sample如下图:


可以直观地看出,本文方法和Groud truth相比,容易丢失较小的目标,比如第一幅图片中的汽车,和第二幅图片中的观众人群,如果要改进的话,这一点上应该是有一些提升空间的。

目录
相关文章
|
域名解析 缓存
nslookup 查询已经解析,但是域名解析无法访问
nslookup 已经解析,域名解析规则:域名和主机双向绑定才能才能访问
1507 0
|
云计算 项目管理 云安全
附PPT下载 | 小邪:新基建之云上IT研发路 - 基于云架构的研发模式演进
企业的数字化上云已经成为社会共识。5G、工业互联网、人工智能、云计算作为数字经济的主要基础设施,将成为中国新基建的主要内容。云将给IT部门及IT人员带来研发运维方面的革命性的变化与冲击。本次分享将由阿里巴巴集团副总裁、云智能基础产品事业部负责人蒋江伟为大家介绍阿里巴巴面向互联网、面向云的研发模式的演
1730 0
|
12月前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
300 12
|
存储 编解码 算法
视频为什么可以被压缩?帧内压缩与帧间压缩有何区别?视频编码中的CBR、VBR、CRF...是什么?
视频压缩基于冗余,包括空间冗余、时间冗余、视觉冗余和编码冗余。帧内压缩利用空间相关性,帧间压缩利用时间相关性。视频编码中的码率控制方法有CBR(固定码率)、VBR(动态码率)、CRF(固定码率系数)、CQP(固定质量参数)、CVBR(约束可变码率)和ABR(平均码率),各有优缺点,适用于不同的场景。
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
Ubuntu Linux Shell
10-11|linux如何修改时区
10-11|linux如何修改时区
|
Linux 开发者 Python
从Windows到Linux,Python系统调用如何让代码飞翔🚀
【9月更文挑战第10天】在编程领域,跨越不同操作系统的障碍是常见挑战。Python凭借其“编写一次,到处运行”的理念,显著简化了这一过程。通过os、subprocess、shutil等标准库模块,Python提供了统一的接口,自动处理底层差异,使代码在Windows和Linux上无缝运行。例如,`open`函数在不同系统中以相同方式操作文件,而`subprocess`模块则能一致地执行系统命令。此外,第三方库如psutil进一步增强了跨平台能力,使开发者能够轻松编写高效且易维护的代码。借助Python的强大系统调用功能,跨平台编程变得简单高效。
312 1
|
物联网 数据处理
LLM-05 大模型 15分钟 FineTuning 微调 ChatGLM3-6B(微调实战1) 官方案例 3090 24GB实战 需22GB显存 LoRA微调 P-TuningV2微调
LLM-05 大模型 15分钟 FineTuning 微调 ChatGLM3-6B(微调实战1) 官方案例 3090 24GB实战 需22GB显存 LoRA微调 P-TuningV2微调
399 0
|
监控 项目管理
项目管理的五大过程组及十大知识领域
项目管理的五大过程组及十大知识领域
1152 0
|
机器学习/深度学习 人工智能 算法
探索未来编程语言的发展趋势与挑战
随着科技的迅猛发展,编程语言也在不断演变。本文将探讨未来编程语言的发展趋势及面临的挑战,涵盖了人工智能、区块链、量子计算等前沿技术领域,以及如何应对未来编程语言的发展趋势进行探索。