同步容器类有以上问题,导致这些类成了鸡肋,Java 5推出了并发容器类
队列Queue类型的BlockingQueue和ConcurrentLinkedQueue
Map类型的ConcurrentMap
Set类型的ConcurrentSkipListSet和CopyOnWriteArraySet
List类型的CopyOnWriteArrayList
Map对应的有ConcurrentHashMap
Map对应的有ConcurrentHashMap
更加细化的锁机制。同步容器直接把容器对象做为锁,这样就把所有操作串行化,其实这是没必要的,过于悲观,而并发容器采用更细粒度的锁机制,名叫分离锁,保证一些不会发生并发问题的操作进行并行执行。
附加了一些原子性的复合操作。比如putIfAbsent方法
迭代器的弱一致性,而非“及时失败”。它在迭代过程中不再抛出Concurrentmodificationexception异常,而是弱一致性。
在并发高的情况下,有可能size和isEmpty方法不准确,但真正在并发环境下这些方法也没什么作用
另外,它还有一些附加的原子操作,缺少即加入、相等便移除、相等便替换。
putIfAbsent(K key, V value),缺少即加入(如果该键已经存在,则不加入)
如果指定键已经不再与某个值相关联,则将它与给定值关联。
类似于下面的操作
If(!map.containsKey(key)){
return map.put(key,value);
}else{
return map.get(key);
}
remove(Object key, Object value),相等便移除
只有目前将键的条目映射到给定值时,才移除该键的条目。
类似于下面的:
if(map.containsKey(key) && map.get(key).equals(value)){
Map.remove();
return true;
}else{
return false;
}
replace(K key, V value)
replace(K key, V oldValue, V newValue),相等便替换。
只有目前将键的条目映射到某一值时,才替换该键的条目。
上面提到的三个,都是原子的。在一些缓存应用中可以考虑代替HashMap/Hashtable
ConcurrentHashMap
对应的非并发容器:HashMap
目标:代替Hashtable、synchronizedMap,支持复合操作
原理:JDK6中采用一种更加细粒度的加锁机制Segment“分段锁”,JDK8中采用CAS无锁算法
在JDK6中ConcurrentHashMap的的并发实现主要利用内部类Segment实现”分段加锁“的思想
ConcurrentHashMap融合了hashtable和hashmap二者的优势。
hashtable是做了同步的,hashmap未考虑同步。所以hashmap在单线程情况下效率较高。hashtable在的多线程情况下,同步操作能保证程序执行的正确性。但是hashtable每次同步执行的时候都要锁住整个结构.
源码
public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
implements ConcurrentMap<K, V>, Serializable
继承了java.util.AbstractMap中已有的实现,这个在前面整理HashMap的时候已经提过了,重点看后面实现的接口ConcurrentMap和Serializable。Serializable是做序列化处理的,而ConcurrentMap的定义又如下:
ublic interface ConcurrentMap<K, V> extends Map<K, V> {
V putIfAbsent(K key, V value);
boolean remove(Object key, Object value);
boolean replace(K key, V oldValue, V newValue);
V replace(K key, V value);
}
V putIfAbsent(K key, V value); 如果没有这个key,则放入这个key-value,返回null,否则返回key对应的value。
boolean remove(Object key, Object value); 移除key和对应的value,如果key对应的不是value,移除失败
boolean replace(K key, V oldValue, V newValue); 替代key对应的值,仅当当前值为旧值
V replace(K key, V value); 替代key对应的值,只要当前有值
构造方法和ConcurrentHashMap的Segment实现
ublic ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel)
有几个重载的方法,说这个参数最全的,有3个参数,除了HashMap中涉及到的loadFactor和initialCapacity外,还有一个concurrencyLevel,翻译过来就是并发级别或者并发度。与此对应,ConcurrentHashMap中有一个segments数组对象,元素类型是ConcurrentHashMap的内部类Segment,而concurrencyLevel就是这个segments数组的大小。
static final class Segment<K,V> extends ReentrantLock implements Serializable
Segment扩展了ReentrantLock并实现了Serializable接口。除此之外,我们还发现这个类里实现的东西和java.util.HashMap非常相似。
实际上,这个类正是整个ConcurrentHashMap实现的关键。我想,作为这篇文章读者的您,应该会用到过各式各样的数据库,就拿Mysql的innoDB引擎来看,它除了支持表级锁意外,还支持行级锁,意义就在于这减小了锁粒度,当只对某行数据进行操作的时候,很可能没有必要限制同一个表中其它行的数据。在这个类中,这个Segment也是起到了同样的作用。每个Segment本身就是一个ReentrantLock,只有要修改的数据存在在同一个Segment,才有可能会需要锁定,这样就提高了多线程情况下效率,没必要所有线程全部等待锁。
public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
实际上,就是通过key计算得到的hash值,确定对应的Segment对象,并用原子操作获取到对应的table和table中hash值对应的对象。我们可以看到,在这个过程中,是没有显式用到锁的,仅仅是通过Unsafe类和原子操作,避免了阻塞,提高了性能。
public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}
我们看到其中最后是使用Segment的put()方法的调用,而putIfAbsent()的方法的调用,仅仅是最后一个参数不同。
Segment的put()方法的final V put(K key, int hash, V value,
boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}