java-基础-TreeMap和HashMap

简介: HashMap通过hashcode对其内容进行快速查找,而 TreeMap中所有的元素都保持着某种固定的顺序,如果你需要得到一个有序的结果你就应该使用TreeMap(HashMap中元素的排列顺序是不固定的)。

HashMap通过hashcode对其内容进行快速查找,而 TreeMap中所有的元素都保持着某种固定的顺序,如果你需要得到一个有序的结果你就应该使用TreeMap(HashMap中元素的排列顺序是不固定的)。
HashMap 非线程安全 TreeMap 非线程安全
线程安全
在Java里,线程安全一般体现在两个方面:
1、多个thread对同一个java实例的访问(read和modify)不会相互干扰,它主要体现在关键字synchronized。如ArrayList和Vector,HashMap和Hashtable
(后者每个方法前都有synchronized关键字)。如果你在interator一个List对象时,其它线程remove一个element,问题就出现了。
2、每个线程都有自己的字段,而不会在多个线程之间共享。它主要体现在java.lang.ThreadLocal类,而没有Java关键字支持,如像static、transient那样。
1.AbstractMap抽象类和SortedMap接口
AbstractMap抽象类:(HashMap继承AbstractMap)覆盖了equals()和hashCode()方法以确保两个相等映射返回相同的哈希码。如果两个映射大小相等、包含同样的键且每个键在这两个映射中对应的值都相同,则这两个映射相等。映射的哈希码是映射元素哈希码的总和,其中每个元素是Map.Entry接口的一个实现。因此,不论映射内部顺序如何,两个相等映射会报告相同的哈希码。
SortedMap接口:(TreeMap继承自SortedMap)它用来保持键的有序顺序。SortedMap接口为映像的视图(子集),包括两个端点提供了访问方法。除了排序是作用于映射的键以外,处理SortedMap和处理SortedSet一样。添加到SortedMap实现类的元素必须实现Comparable接口,否则您必须给它的构造函数提供一个Comparator接口的实现。TreeMap类是它的唯一一份实现。

HashMap:基于哈希表实现。使用HashMap要求添加的键类明确定义了hashCode()equals()[可以重写hashCode()和equals()],为了优化HashMap空间的使用,您可以调优初始容量和负载因子。 
(1)HashMap(): 构建一个空的哈希映像 
(2)HashMap(Map m): 构建一个哈希映像,并且添加映像m的所有映射 
(3)HashMap(int initialCapacity): 构建一个拥有特定容量的空的哈希映像 
(4)HashMap(int initialCapacity, float loadFactor): 构建一个拥有特定容量和加载因子的空的哈希映像 
TreeMap:基于红黑树实现。TreeMap没有调优选项,因为该树总处于平衡状态。 
(1)TreeMap():构建一个空的映像树 
(2)TreeMap(Map m): 构建一个映像树,并且添加映像m中所有元素 
(3)TreeMap(Comparator c): 构建一个映像树,并且使用特定的比较器对关键字进行排序 
(4)TreeMap(SortedMap s): 构建一个映像树,添加映像树s中所有映射,并且使用与有序映像s相同的比较器排序 

HashMap:适用于在Map中插入、删除和定位元素。
Treemap:适用于按自然顺序或自定义顺序遍历键(key)。

import java.util.HashMap; 
import java.util.Hashtable; 
import java.util.Iterator; 
import java.util.Map; 
import java.util.TreeMap; 
public class HashMaps { 
public static void main(String[] args) { 
Map<String, String> map = new HashMap<String, String>(); 
map.put("a", "aaa"); 
map.put("b", "bbb"); 
map.put("c", "ccc"); 
map.put("d", "ddd"); 
Iterator<String> iterator = map.keySet().iterator(); 
while (iterator.hasNext()) { 
Object key = iterator.next(); 
System.out.println("map.get(key) is :" + map.get(key)); 
} 
// 定义HashTable,用来测试 
Hashtable<String, String> tab = new Hashtable<String, String>(); 
tab.put("a", "aaa"); 
tab.put("b", "bbb"); 
tab.put("c", "ccc"); 
tab.put("d", "ddd"); 
Iterator<String> iterator_1 = tab.keySet().iterator(); 
while (iterator_1.hasNext()) { 
Object key = iterator_1.next(); 
System.out.println("tab.get(key) is :" + tab.get(key)); 
} 
TreeMap<String, String> tmp = new TreeMap<String, String>(); 
tmp.put("a", "aaa"); 
tmp.put("b", "bbb"); 
tmp.put("c", "ccc"); 
tmp.put("d", "cdc"); 
Iterator<String> iterator_2 = tmp.keySet().iterator(); 
while (iterator_2.hasNext()) { 
Object key = iterator_2.next(); 
System.out.println("tmp.get(key) is :" + tmp.get(key)); 
} 
} 
} 

HashMap通常比TreeMap快一点(树和哈希表的数据结构使然),建议多使用HashMap,在需要排序的Map时候才用TreeMap。

import java.util.*; 
public class Exp1 { 
public static void main(String[] args){ 
HashMap h1=new HashMap(); 
Random r1=new Random(); 
for (int i=0;i<1000;i++){ 
Integer t=new Integer(r1.nextInt(20)); 
if (h1.containsKey(t)) 
((Ctime)h1.get(t)).count++; 
else 
h1.put(t, new Ctime()); 
} 
System.out.println(h1); 
} 
} 
class Ctime{ 
int count=1; 
public String toString(){ 
return Integer.toString(count); 
} 
} 

在HashMap中通过get()来获取value,通过put()来插入value,ContainsKey()则用来检验对象是否已经存在。可以看出,和ArrayList的操作相比,HashMap除了通过key索引其内容之外,别的方面差异并不大。
前面介绍了,HashMap是基于HashCode的,在所有对象的超类Object中有一个HashCode()方法,但是它和equals方法一样,并不能适用于所有的情况,这样我们就需要重写自己的HashCode()方法。

import java.util.*; 
public class Exp2 { 
public static void main(String[] args){ 
HashMap h2=new HashMap(); 
for (int i=0;i<10;i++) 
h2.put(new Element(i), new Figureout()); 
System.out.println("h2:"); 
System.out.println("Get the result for Element:"); 
Element test=new Element(5); 
if (h2.containsKey(test)) 
System.out.println((Figureout)h2.get(test)); 
else 
System.out.println("Not found"); 
} 
} 
class Element{ 
int number; 
public Element(int n){ 
number=n; 
} 
} 
class Figureout{ 
Random r=new Random(); 
boolean possible=r.nextDouble()>0.5; 
public String toString(){ 
if (possible) 
return "OK!"; 
else 
return "Impossible!"; 
} 
} 

在这个例子中,Element用来索引对象Figureout,也即Element为key,Figureout为value。在Figureout中随机生成一个浮点数,如果它比0.5大,打印”OK!”,否则打印”Impossible!”。之后查看Element(3)对应的Figureout结果如何。

结果却发现,无论你运行多少次,得到的结果都是”Not found”。也就是说索引Element(3)并不在HashMap中。这怎么可能呢?
原因得慢慢来说:Element的HashCode方法继承自Object,而Object中的HashCode方法返回的HashCode对应于当前的地址,也就是说对于不同的对象,即使它们的内容完全相同,用HashCode()返回的值也会不同。这样实际上违背了我们的意图。因为我们在使用 HashMap时,希望利用相同内容的对象索引得到相同的目标对象,这就需要HashCode()在此时能够返回相同的值。在上面的例子中,我们期望 new Element(i) (i=5)与 Elementtest=newElement(5)是相同的,而实际上这是两个不同的对象,尽管它们的内容相同,但它们在内存中的地址不同。因此很自然的,上面的程序得不到我们设想的结果。
面对Element类更改如下:

class Element{ 
int number; 
public Element(int n){ 
number=n; 
} 
public int hashCode(){ 
return number; 
} 
public boolean equals(Object o){ 
return (o instanceof Element) && (number==((Element)o).number); 
} 
} 

在这里Element覆盖了Object中的hashCode()和equals()方法。覆盖hashCode()使其以number的值作为 hashcode返回,这样对于相同内容的对象来说它们的hashcode也就相同了。而覆盖equals()是为了在HashMap判断两个key是否相等时使结果有意义(有关重写equals()的内容可以参考我的另一篇文章《重新编写Object类中的方法》)。修改后的程序运行结果如下:
h2:
Get the result for Element:
Impossible!
请记住:如果你想有效的使用HashMap,你就必须重写在其的HashCode()。
还有两条重写HashCode()的原则:
[list=1]
不必对每个不同的对象都产生一个唯一的hashcode,只要你的HashCode方法使get()能够得到put()放进去的内容就可以了。即”不为一原则”。

生成hashcode的算法尽量使hashcode的值分散一些,不要很多hashcode都集中在一个范围内,这样有利于提高HashMap的性能。即”分散原则”。至于第二条原则的具体原因,有兴趣者可以参考Bruce Eckel的《Thinking in Java》,在那里有对HashMap内部实现原理的介绍,这里就不赘述了。
掌握了这两条原则,你就能够用好HashMap编写自己的程序了。不知道大家注意没有,java.lang.Object中提供的三个方法:clone(),equals()和hashCode()虽然很典型,但在很多情况下都不能够适用,它们只是简单的由对象的地址得出结果。这就需要我们在自己的程序中重写它们,其实java类库中也重写了千千万万个这样的方法。利用面向对象的多态性——覆盖,Java的设计者很优雅的构建了Java的结构,也更加体现了Java是一门纯OOP语言的特性。

目录
相关文章
|
14天前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
27 1
|
16天前
|
存储 安全 Java
Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
【10月更文挑战第17天】Java Map新玩法:探索HashMap和TreeMap的高级特性,让你的代码更强大!
38 2
|
13天前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
32 5
|
14天前
|
存储 Java API
详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
【10月更文挑战第19天】深入剖析Java Map:不仅是高效存储键值对的数据结构,更是展现设计艺术的典范。本文从基本概念、设计艺术和使用技巧三个方面,详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
34 3
|
14天前
|
存储 缓存 安全
在Java的Map家族中,HashMap和TreeMap各具特色
【10月更文挑战第19天】在Java的Map家族中,HashMap和TreeMap各具特色。HashMap基于哈希表实现,提供O(1)时间复杂度的高效操作,适合性能要求高的场景;TreeMap基于红黑树,提供O(log n)时间复杂度的有序操作,适合需要排序和范围查询的场景。两者在不同需求下各有优势,选择时需根据具体应用场景权衡。
20 2
|
14天前
|
存储 安全 Java
Java Map新玩法:深入探讨HashMap和TreeMap的高级特性
【10月更文挑战第19天】Java Map新玩法:深入探讨HashMap和TreeMap的高级特性,包括初始容量与加载因子的优化、高效的遍历方法、线程安全性处理以及TreeMap的自然排序、自定义排序、范围查询等功能,助你提升代码性能与灵活性。
22 2
|
24天前
|
Java
让星星⭐月亮告诉你,HashMap中保证红黑树根节点一定是对应链表头节点moveRootToFront()方法源码解读
当红黑树的根节点不是其对应链表的头节点时,通过调整指针的方式将其移动至链表头部。具体步骤包括:从链表中移除根节点,更新根节点及其前后节点的指针,确保根节点成为新的头节点,并保持链表结构的完整性。此过程在Java的`HashMap$TreeNode.moveRootToFront()`方法中实现,确保了高效的数据访问与管理。
27 2
|
24天前
|
Java 索引
让星星⭐月亮告诉你,HashMap之往红黑树添加元素-putTreeVal方法源码解读
本文详细解析了Java `HashMap` 中 `putTreeVal` 方法的源码,该方法用于在红黑树中添加元素。当数组索引位置已存在红黑树类型的元素时,会调用此方法。具体步骤包括:从根节点开始遍历红黑树,找到合适位置插入新元素,调整节点指针,保持红黑树平衡,并确保根节点是链表头节点。通过源码解析,帮助读者深入理解 `HashMap` 的内部实现机制。
30 2
|
26天前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
49 0
|
24天前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
50 5