System.arraycopy

简介: 当我还年幼的时候,我很任性,复制数组也是,写一个for循环,来回倒腾,后来长大了,就发现了System.arraycopy的好处。 为了测试俩者的区别我写了一个简单赋值int[100000]的程序来对比,并且中间使用了nanoTime来计算时间差: ...

当我还年幼的时候,我很任性,复制数组也是,写一个for循环,来回倒腾,后来长大了,就发现了System.arraycopy的好处。

为了测试俩者的区别我写了一个简单赋值int[100000]的程序来对比,并且中间使用了nanoTime来计算时间差:

程序如下:

        int[] a = new int[100000];
        for(int i=0;i<a.length;i++){
            a[i] = i;
        }
        
        int[] b = new int[100000];
        
        int[] c = new int[100000];
        for(int i=0;i<c.length;i++){
            c[i] = i;
        }
        
        int[] d = new int[100000];
        
        for(int k=0;k<10;k++){
            long start1 = System.nanoTime();
            for(int i=0;i<a.length;i++){
                b[i] = a[i];
            }
            long end1 = System.nanoTime();
            System.out.PRintln("end1 - start1 = "+(end1-start1));
            
            
            long start2 = System.nanoTime();
            System.arraycopy(c, 0, d, 0, 100000);
            long end2 = System.nanoTime();
            System.out.println("end2 - start2 = "+(end2-start2));
            
            System.out.println();
        }

为了避免内存不稳定干扰和运行的偶然性结果,我在一开始的时候把所有空间申明完成,并且只之后循环10次执行,得到如下结果:

end1 - start1 = 366806
end2 - start2 = 109154

end1 - start1 = 380529
end2 - start2 = 79849

end1 - start1 = 421422
end2 - start2 = 68769

end1 - start1 = 344463
end2 - start2 = 72020

end1 - start1 = 333174
end2 - start2 = 77277

end1 - start1 = 377335
end2 - start2 = 82285

end1 - start1 = 370608
end2 - start2 = 66937

end1 - start1 = 349067
end2 - start2 = 86532

end1 - start1 = 389974
end2 - start2 = 83362

end1 - start1 = 347937
end2 - start2 = 63638

可以看出,System.arraycopy的性能很不错,为了看看究竟这个底层是如何处理的,我找到openJDK的一些代码留恋了一些:

System.arraycopy是一个native函数,需要看native层的代码:

    public static native void arraycopy(Object src,  int  srcPos,
                                        Object dest, int destPos,
                                        int length);

找到对应的openjdk6-src/hotspot/src/share/vm/prims/jvm.cpp,这里有JVM_ArrayCopy的入口:

JVM_ENTRY(void, JVM_ArrayCopy(JNIEnv *env, jclass ignored, jobject src, jint src_pos,
                               jobject dst, jint dst_pos, jint length))
  JVMWrapper("JVM_ArrayCopy");
  // Check if we have null pointers
  if (src == NULL || dst == NULL) {
    THROW(vmSymbols::java_lang_NullPointerException());
  }
  arrayOop s = arrayOop(JNIHandles::resolve_non_null(src));
  arrayOop d = arrayOop(JNIHandles::resolve_non_null(dst));
  assert(s->is_oop(), "JVM_ArrayCopy: src not an oop");
  assert(d->is_oop(), "JVM_ArrayCopy: dst not an oop");
  // Do copy
  Klass::cast(s->klass())->copy_array(s, src_pos, d, dst_pos, length, thread);
JVM_END

前面的语句都是判断,知道最后的copy_array(s, src_pos, d, dst_pos, length, thread)是真正的copy,进一步看这里,在openjdk6-src/hotspot/src/share/vm/oops/typeArrayKlass.cpp中:

void typeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
  assert(s->is_typeArray(), "must be type array");

  // Check destination
  if (!d->is_typeArray() || element_type() != typeArrayKlass::cast(d->klass())->element_type()) {
    THROW(vmSymbols::java_lang_ArrayStoreException());
  }

  // Check is all offsets and lengths are non negative
  if (src_pos < 0 || dst_pos < 0 || length < 0) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }
  // Check if the ranges are valid
  if  ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
     || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }
  // Check zero copy
  if (length == 0)
    return;

  // This is an attempt to make the copy_array fast.
  int l2es = log2_element_size();
  int ihs = array_header_in_bytes() / WordSize;
  char* src = (char*) ((oop*)s + ihs) + ((size_t)src_pos << l2es);
  char* dst = (char*) ((oop*)d + ihs) + ((size_t)dst_pos << l2es);
  Copy::conjoint_memory_atomic(src, dst, (size_t)length << l2es);//还是在这里处理copy
}

这个函数之前的仍然是一堆判断,直到最后一句才是真实的拷贝语句。

在openjdk6-src/hotspot/src/share/vm/utilities/copy.cpp中找到对应的函数:

// Copy bytes; larger units are filled atomically if everything is aligned.
void Copy::conjoint_memory_atomic(void* from, void* to, size_t size) {
  address src = (address) from;
  address dst = (address) to;
  uintptr_t bits = (uintptr_t) src | (uintptr_t) dst | (uintptr_t) size;

  // (Note:  We could improve performance by ignoring the low bits of size,
  // and putting a short cleanup loop after each bulk copy loop.
  // There are plenty of other ways to make this faster also,
  // and it's a slippery slope.  For now, let's keep this code simple
  // since the simplicity helps clarify the atomicity semantics of
  // this Operation.  There are also CPU-specific assembly versions
  // which may or may not want to include such optimizations.)

  if (bits % sizeof(jlong) == 0) {
    Copy::conjoint_jlongs_atomic((jlong*) src, (jlong*) dst, size / sizeof(jlong));
  } else if (bits % sizeof(jint) == 0) {
    Copy::conjoint_jints_atomic((jint*) src, (jint*) dst, size / sizeof(jint));
  } else if (bits % sizeof(jshort) == 0) {
    Copy::conjoint_jshorts_atomic((jshort*) src, (jshort*) dst, size / sizeof(jshort));
  } else {
    // Not aligned, so no need to be atomic.
    Copy::conjoint_jbytes((void*) src, (void*) dst, size);
  }
}

上面的代码展示了选择哪个copy函数,我们选择conjoint_jints_atomic,在openjdk6-src/hotspot/src/share/vm/utilities/copy.hpp进一步查看:

// jints,                 conjoint, atomic on each jint
  static void conjoint_jints_atomic(jint* from, jint* to, size_t count) {
    assert_params_ok(from, to, LogBytesPerInt);
    pd_conjoint_jints_atomic(from, to, count);
  }

继续向下查看,在openjdk6-src/hotspot/src/cpu/zero/vm/copy_zero.hpp中:

static void pd_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
  _Copy_conjoint_jints_atomic(from, to, count);
}

继续向下查看,在openjdk6-src/hotspot/src/os_cpu/linux_zero/vm/os_linux_zero.cpp中:

void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
    if (from > to) {
      jint *end = from + count;
      while (from < end)
        *(to++) = *(from++);
    }
    else if (from < to) {
      jint *end = from;
      from += count - 1;
      to   += count - 1;
      while (from >= end)
        *(to--) = *(from--);
    }
  }

可以看到,直接就是内存块赋值的逻辑了,这样避免很多引用来回倒腾的时间,必然就变快了。

目录
相关文章
|
12月前
Arrays.asList的坑
Arrays.asList的坑
49 0
|
Java C++
List.of() Vs Arrays.asList()
在上面的示例中,List.of() 用于创建不可变的颜色列表。任何通过添加或删除元素来修改列表的尝试都将导致抛出异常。 Arrays.asList() 当我们想要由指定数组支持的固定大小(可序列化)集合时,请使用此方法。对返回集合的任何更改也将写入原始数组。 java
66 0
|
Java 编译器 索引
深入解析Java中的数组复制:System.arraycopy、Arrays.copyOf和Arrays.copyOfRange
当涉及到在Java中处理数组时,有许多方法可供选择,其中一些包括`System.arraycopy()`、`Arrays.copyOf()`和`Arrays.copyOfRange()`。这些方法允许您在不同的数组之间复制数据,但它们之间有一些细微的差异。在本篇博客文章中,我们将深入探讨这些方法,以便您了解何时使用它们以及如何正确使用它们。
509 1
|
Java
Arrays.asList()方法 讲解
Arrays.asList()方法 讲解
109 0
|
Java
Java 数组中System.arraycopy()方法和System类中相关的其他方法的使用详解
Java 数组中System.arraycopy()方法和System类中相关的其他方法的使用详解
54 0
|
C++ 存储 Java
Arrays.copyOf()与System.arraycopy()的区别
Arrays.copyOf()与System.arraycopy()的区别
185 0
Arrays.copyOf()与System.arraycopy()的区别
|
Java C++ 索引
Arrays.asList() vs Collections.singletonList()
看了 IDEA 的告警: 与 Collections.singletonList 比,使用 Arrays.asList 来生成一个list是否更有优势?后者还能使得返回的list不可变。
144 0
|
Java API
Arrays.asList注意事项
Arrays.asList注意事项
|
安全 Java API
Arrays.asList 解析
快速学习方法的定义 | 学习笔记
100 0
Arrays.asList存在的坑
Arrays.asList存在的坑
103 0