去哪儿网基于Mesos和Docker构建私有云服务实践

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本文深入介绍了去哪儿网利用Mesos和Docker构建私有云服务的全过程,分享了从无状态应用向有状态应用逐步过度的经验与心得。

平台概览

2014年下半年左右,去哪儿完成了有关构建私有云服务的技术调研,并最终拍定了Docker/Mesos这一方案。下图1展示了去哪儿数据平台的整体架构:

去哪儿网基于Mesos和Docker构建私有云服务的实践
图1:去哪儿数据平台的整体架构

该平台目前已实现了如下多项功能:

  • 每天处理约340亿/25TB的数据;
  • 90%的数据在100ms内完成处理;
  • 最长3h/24h的数据回放;
  • 私有的Elasticsearch Cloud;
  • 自动化监控与报警。

为什么选择Docker/Mesos

目前为止,这个数据平台可以说是公司整个流数据的主要出入口,包括私有的Elasticsearch Cloud和监控报警之类的数据。那么为什么选择Docker/Mesos?

选择Docker有两大原因。第一个是打包:对于运维来讲,业务打完包之后,每天面对的是用脚本分发到机器上时所出现的各种问题。业务包是一个比较上层的话题,这里不做深入的讨论,这里讲的“打包”指软件的Runtime层。如果用Docker的打包机制,把最容易出现问题的Runtime包装成镜像并放在registry里,需要的时候拿出来,那么整个平台最多只执行一个远程脚本就可以了,这是团队最看好的一个特性。第二个是运维:Docker取消了依赖限制,只要构建一个虚拟环境或一个Runtime的镜像,就可以直接拉取到服务器上并启动相应的程序。此外Docker在清理上也较为简单,不需要考虑环境卸载不干净等问题。

以常见的计算框架来说,它们本质上仍然属于运行在其上的Job的Runtime。综合上述情况,团队选择针对Runtime去打包。

选择Mesos是因为它足够简单和稳定,而且拥有较成熟的调度框架。Mesos的简单体现在,与Kubernetes相比其所有功能都处于劣势,甚至会发现它本身都是不支持服务的,用户需要进行二次开发来满足实际要求,包括网络层。不过,这也恰好是它的强项。Mesos本身提供了很多SDN接口,或者是有模块加载机制,可以做自定义修改,平台定制功能比较强。所以用Mesos的方案,需要考虑团队是否可以Hold住整个开发过程。

从框架层面来看,Marathon可以支撑一部分长期运行的服务,Chronos则侧重于定时任务/批处理。

以下图2是Mesos的一个简单结构图:

去哪儿网基于Mesos和Docker构建私有云服务的实践
图2:Mesos结构

数据平台的最终目标架构如下图3所示:

去哪儿网基于Mesos和Docker构建私有云服务的实践
图3:平台目标

组件容器化与部署

组件的容器化分为JVM容器化和Mesos容器化。JVM容器化需要注意以下几方面:

潜在创建文件的配置都要注意


 
 
  1. java.io.tmpdir  
  2. -XX:HeapDumpPath  
  3. -Xloggc 

-Xloggc会记录GC的信息到制定的文件中。现在很少有直接用XLoggc配置的了(已经用MXBean方式替代了)。如果有比较老的程序是通过-Xloggc打印GC日志的话,那么要额外挂载volume到容器内。

时区与编码


 
 
  1. –env TZ=Asia/Shanghai  
  2. –volume /etc/localtime:/etc/localtime:ro  
  3. –env JAVA_TOOL_OPTIONS=”-Dfile.encoding=UTF-8 -Duser.timezone=PRC 

时区是另一个注意点。上面所列的三种不同的方法都可以达到目的,其中第一/三个可以写在Dockerfile里,也可以在docker run时通过–env传入。第二种只在docker run时通过volume方式挂载。另外,第三种额外设置了字符集编码,推荐使用此方式。

主动设置heap

  • 防止ergonomics乱算内存

这是Docker内部实现的问题。即使给Docker设置内存,容器内通过free命令看到的内存和宿主机的内存是一样的。而JVM为了使用方便,会默认设置一个人机功能会根据当前机器的内存计算一个堆大小,如果我们不主动设置JVM堆内存的话,很有可能计算出一个超过 Memory Cgroup限制的内存,启动就宕掉,所以需要注意在启动时就把内存设置好。

CMS收集器要调整并行度


 
 
  1. -XX:ParallelGCThreads=cpus  
  2. -XX:ConcGCThreads=cpus/2 

CMS是常见的收集器,它设置并行度的时候是取机器的核数来计算的。如果给容器分配2个CPU,JVM仍然按照宿主机的核数初始化这些线程数量,GC的回收效率会降低。想规避这个问题有两点,第一点是挂载假的Proc文件系统,比如Lxcfs。第二种是使用类似Hyper的基于Hypervisor的容器。

Mesos容器化要求关注两类参数:配置参数和run参数。

需要关注的配置参数


 
 
  1. MESOS_systemd_enable_support  
  2. MESOS_docker_mesos_image  
  3. MESOS_docker_socket  
  4. GLOG_max_log_size  
  5. GLOG_stop_logging_if_full_disk 

Mesos是配置参数最多的。在物理机上,Mesos默认使用系统的Systemd管理任务,如果把Mesos通过Docker run的方式启动起来,用户就要关systemd_Enable_support,防止Mesos Slave拉取容器运行时数据造成混乱。

第二个是Docker_Mesos_Image,这个配置告诉Mesos Slave,当前是运行在容器内的。在物理机环境下,Mesos Slave进程宕掉重启,、就会根据executor进程/容器的名字做recovery动作。但是在容器内,宕机后executor全部回收了,重启容器,Slave认为是一个新环境,跳过覆盖动作并自动下发任务,所以任务有可能会发重。

Docker_Socket会告诉Mesos,Docker指定的远端地址或本地文件,是默认挂到Mesos容器里的。用户如果直接执行文件,会导致文件错误,消息调取失败。这个时候推荐一个简单的办法:把当前物理机的目录挂到容器中并单独命名,相当于在容器内直接访问整个物理机的路径,再重新指定它的地址,这样每次一有变动Mesos就能够发现,做自己的指令。

后面两个是Mesos Logging配置,调整生成logging文件的一些行为。

需要关注的run参数

  • –pid=host
  • –privileged
  • –net=host (optional)
  • root user

启动Slave容器的时候最好不加Pid Namespace,因为容器内Pid=1的进程一般都是你的应用程序,易导致子进程都无法回收,或者采用tini一类的进程启动应用达到相同的目的。–privileged和root user主要是针对Mesos的持久化卷功能,否则无法mount到容器内,–net=host是出于网络效率的考虑,毕竟源生的bridge模式效率比较低。

去哪儿网基于Mesos和Docker构建私有云服务的实践
图4:去哪儿数据平台部署流程图

上图4就是去哪儿数据平台部署的流程图。

基于Marathon的Streaming调度

拿Spark on Mesos记录子,即使是基于Spark的Marathon调度,也需要用户开发一个Frameworks。上生产需要很多代码,团队之前代码加到将近一千,用来专门解决Spark运行在Master中的问题,但是其中一个软件经常跑到Master,对每一个框架写重复性代码,而且内部逻辑很难复用,所以团队考虑把上层的东西全都跑在一个统一框架里,例如后面的运维和扩容,都针对这一个框架做就可以了。团队最终选择了Marathon,把Spark作为Marathon的一个任务发下去,让Spark在Marathon里做分发。

除去提供维标准化和自动化外,基于Spark的Marathon还可以解决Mesos-Dispatcher的一些问题:

  • 配置不能正确同步;这一块更新频率特别慢,默认速度也很慢,所以需要自己来维护一个版本。第一个配置不能正确同步,需要设置一些参数信息、Spark内核核数及内损之类,这里它只会选择性地抽取部分配置发下去。
  • 基于attributes的过滤功能缺失;对于现在的环境,所设置的Attributes过滤功能明显缺失,不管机器是否专用或有没有特殊配置,上来就发,很容易占满ES的机器。
  • 按role/principal接入Mesos;针对不同的业务线做资源配比时,无法对应不同的角色去接入Mesos。
  • 不能re-registery;框架本身不能重注册,如果框架跑到一半挂掉了,重启之后之前的任务就直接忽略不管,需要手工Kill掉这个框架。
  • 不能动态扩容executor。最后是不能扩容、动态调整,临时改动的话只能重发任务。

整个过程比较简单,如下图5所示:

去哪儿网基于Mesos和Docker构建私有云服务的实践
图5:替代Spark Mesos Dispatcher

不过还是有一些问题存在:

Checkpoint & Block

  • 动态预留 & 持久化卷
  • setJars
  • 清理无效的卷

关于Checkpoint&Block,通过动态预留的功能可以把这个任务直接“钉死”在这台机器上,如果它挂的话可以直接在原机器上重启,并挂载volume继续工作。如果不用它预留的话,可能调度到其他机器上,找不到数据Block,造成数据的丢失或者重复处理。

持久化卷是Mesos提供的功能,需要考虑它的数据永存,Mesos提供了一种方案:把本地磁盘升级成一个目录,把这个转移到Docker里。每次写数据到本地时,能直接通过持久化卷来维护,免去手工维护的成本。但它目前有一个问题,如果任务已被回收,它持久化卷的数据是不会自己删掉的,需要写一个脚本定时轮巡并对应删掉。

临时文件

  • java.io.tmpdir=/mnt/mesos/sandbox
  • spark.local.dir=/mnt/mesos/sandbox

如果使用持久化卷,需要修改这两个配置,把这一些临时文件写进去,比如shuffle文件等。如果配置持久化卷的话,用户也可以写持久化卷的路径。

Coarse-Grained

Spark有两种资源调度模式:细粒度和粗粒度。目前已经不太推荐细粒度了,考虑到细粒度会尽可能的把所有资源占满,容易导致Mesos资源被耗尽,所以这个时候更倾向选择粗粒度模式。

去哪儿网基于Mesos和Docker构建私有云服务的实践
图6:Storm on Marathon

上图6展示了基于Storm的Marathon调度,Flink也是如此。结合线上的运维和debug,需要注意以下几方面:

源生Web Console

  • 随机端口
  • OpenResty配合泛域名
  • 默认源生Web Console,前端配置转发,直接访问固定域名。

Filebeat + Kafka + ELK

  • 多版本追溯
  • 日常排错
  • 异常监控

大部分WebUI上看到的都是目前内部的数据处理情况,可以通过ELK查询信息。如果任务曾经运行在不同版本的Spark上,可以把多版本的日志都追踪起来,包括日常、问题监控等,直接拿来使用。

Metrics

第三个需要注意的就是指标。比如Spark ,需要配合Metrics把数据源打出来就行。

ELK on Mesos

目前平台已有近50个集群,约100TB+业务数据量,高峰期1.2k QPS以及约110个节点,Elasticsearch需求逐步增多。

去哪儿网基于Mesos和Docker构建私有云服务的实践
图7:ELK on Mesos

上图7是ELK on Mesos结构图,也是团队的无奈之选。因为Mesos还暂时不支持multi-role framework功能,所以选择了这种折中的方式来做。在一个Marathon里,根据业务线设置好Quota后,用业务线重新发一个新的Marathon接入进去。对于多租户来讲,可以利用Kubernetes做后续的资源管控和资源申请。

部署ES以后,有一个关于服务发现的问题,可以去注册一个callback,Marathon会返回信息,解析出master/slave进程所在的机器和端口,配合修改Haproxy做一层转发,相当于把后端整个TCP的连接都做一个通路。ES跟Spark不完全相同,Spark传输本身流量就比较大,而ES启动时需要主动联系Master地址,再通过Master获取相应集群,后面再做P2P,流量比较低,也不是一个长链接。

监控与运维

这部分包括了Streaming监控指标与报警、容器监控指标与报警两方面。

Streaming监控指标与报警

  • Streaming监控含拓扑监控和业务监控两部分。
  • Streaming拓扑监控

业务监控

  • Kafka Topic Lag
  • 处理延迟mean90/upper90
  • Spark scheduler delay/process delay
  • Search Count/Message Count
  • Reject/Exception
  • JVM

拓扑监控包括数据源和整个拓扑流程,需要用户自己去整理和构建,更新的时候就能够知道这个东西依赖谁、是否依赖线上服务,如果中途停的话会造成机器故障。业务监控的话,第一个就是Topic Lag,Topic Lag每一个波动都是不一样的,用这种方式监控会频繁报警,90%的中位数都是落在80—100毫秒范围内,就可以监控到整个范围。

容器监控指标与报警

容器监控上关注以下三方面:

Google cAdvisor足够有效

  • mount rootfs可能导致容器删除失败 #771
  • –docker_only
  • –docker_env_metadata_whitelist

Statsd + Watcher

  • 基于Graphite的千万级指标监控平台

Nagios

容器这一块比较简单,利用Docker并配合Mesos,再把Marathon的ID抓取出来就可以了。我们这边在实践的过程发现一个问题,因为Statsd Watcher容易出现问题,你直接用Docker的时候它会报一些错误出来,这个问题就是Statsd Watcher把路径给挂了的原因。目前我们平台就曾遇到过一次,社区里面也有人曝,不过复现率比较低。用的时候如果发现这个问题把Statsd Watcher直接停掉就好。指标的话,每台机器上放一个statsd再发一个后台的Worker,报警平台也是这个。

其实针对Docker监控的话,还是存在着一些问题:

基础监控压力

  • 数据膨胀
  • 垃圾指标增多
  • 大量的通配符导致数据库压力较高

单个任务的容器生命周期

  • 发布
  • 扩容
  • 异常退出

首先主要是监控系统压力比较大。原来监控虚拟机时都是针对每一个虚拟机的,只要虚拟机不删的话是长期汇报,指标名固定,但在容器中这个东西一直在变,它在这套体系下用指标并在本地之外建一个目录存文件,所以在这种存储机制下去存容器的指标不合适。主要问题是数据膨胀比较厉害,可能一个容器会起名,起名多次之后,在Graphite那边对应了有十多个指标,像这种都是预生成的监控文件。比如说定义每一秒钟一个数据点,要保存一年,这个时候它就会根据每年有多少秒生成一个RRD文件放那儿。这部分指标如果按照现有标准的话,可能容器的生命周期仅有几天时间,不适用这种机制。测试相同的指标量,公司存储的方式相对来说比Graphite好一点。因为Graphite是基于文件系统来做的,第一个优化指标名,目录要转存到数据库里做一些索引加速和查询,但是因为容器这边相对通配符比较多,不能直接得知具体对应的ID,只能通配符查询做聚合。因为长期的通配符在字符串的索引上还是易于使用的,所以现在算是折中的做法,把一些常用的查询结果、目录放到里边。

另一个是容器的生命周期。可以做一些审计或者变更的版本,在Mesos层面基于Marathon去监控,发现这些状态后打上标记:当前是哪一个容器或者哪一个TASK出了问题,对应扩容和记录下来。还有Docker自己的问题,这样后面做整个记录时会有一份相对比较完整的TASK-ID。

作者简介:徐磊,去哪儿网平台事业部运维开发工程师,2015年加入去哪儿网,负责实时日志相关的开发与运维工作。有多年电信、云计算行业经验,曾供职于红帽中国。  


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
11天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
45 2
|
13天前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
13天前
|
Cloud Native 持续交付 Docker
Docker容器化技术:从入门到实践
Docker容器化技术:从入门到实践
|
19天前
|
存储 监控 Linux
docker构建镜像详解!!!
本文回顾了Docker的基本命令和管理技巧,包括容器和镜像的增删改查操作,容器的生命周期管理,以及如何通过端口映射和数据卷实现容器与宿主机之间的网络通信和数据持久化。文章还详细介绍了如何使用Docker部署一个简单的Web应用,并通过数据卷映射实现配置文件和日志的管理。最后,文章总结了如何制作自定义镜像,包括Nginx、Python3和CentOS镜像,以及如何制作私有云盘镜像。
94 2
|
13天前
|
API Docker 容器
【赵渝强老师】构建Docker Swarm集群
本文介绍了如何使用三台虚拟主机构建Docker Swarm集群。首先在master节点上初始化集群,然后通过特定命令将node1和node2作为worker节点加入集群。最后,在master节点上查看集群的节点信息,确认集群构建成功。文中还提供了相关图片和视频教程,帮助读者更好地理解和操作。
|
13天前
|
缓存 JavaScript 安全
深入理解Docker镜像构建过程
深入理解Docker镜像构建过程
49 0
|
13天前
|
数据中心 开发者 Docker
理解并实践Docker容器化技术
理解并实践Docker容器化技术
|
Linux Docker Windows
Docker概述:什么Docker如此特别,它是如何构建的
本文讲的是Docker概述:什么Docker如此特别,它是如何构建的,【编者的话】在上一系列介绍中,我们大体地介绍了CoreOS。在这个系列中我想介绍一下Docker。本文我们看一下为什么Docker如此特别,它是如何构建的。我们会从基本开始介绍,所以读者不必担心自己是刚接触Docker的。
1373 0
|
8天前
|
运维 Cloud Native 虚拟化
一文吃透云原生 Docker 容器,建议收藏!
本文深入解析云原生Docker容器技术,涵盖容器与Docker的概念、优势、架构设计及应用场景等,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
一文吃透云原生 Docker 容器,建议收藏!
|
1天前
|
Kubernetes Linux 开发者
深入探索容器化技术——Docker 的实战应用
深入探索容器化技术——Docker 的实战应用
20 5