阿里云异构计算全新升级 全方位使能人工智能产业

简介:

随着人工智能的兴起,GPU 借助深度学习,走上了历史的舞台,活跃在各个领域。FPGA 也借着这股浪潮,慢慢地走向数据中心,走向人工智能,发挥着它的优势。

“人工智能浪潮催生的计算迭代需求远超摩尔定律,阿里云希望为人工智能产业提供最强的计算能力,我们开放了视频识别、语音识别、图像识别等人工智能服务及ET工业大脑、医疗大脑场景解决方案,今天我们推出的异构计算加速平台,将进一步完善人工智能产业生态,满足更多客户的核心业务需求。”阿里云异构计算负责人张献涛表示。

9月12日,阿里云宣布推出全新一代异构加速平台,为人工智能产业提供多场景化的全球加速能力。这是阿里云异构计算家族首次亮相,涵盖GPU、FPGA在内等6款异构实例,可满足从图形渲染到高性能计算及人工智能等复杂应用的计算需求。特别是在人工智能领域,可将深度学习成本缩减一半,大幅降低人工智能计算门槛;而基于阿里云异构平台的全新高性能计算实例E-HPC,可一键部署获得媲美大型超算集群环境的“云上超算中心”。

阿里云

最新一代GPU实例GN5i采用了英伟达 Pascal架构P4图形处理器,主要适用于深度学习的在线推理(Inference)阶段,提供最大45Tops INT8整型计算能力和11TFlops FP32单精度浮点计算能力。可根据深度学习计算力的要求,进行GPU实例的“Scale-out”水平扩容或“Scale-up”垂直变配,分钟级即可完成实例的创建。可一键部署TensorFlow等主流深度学习框架,提供智能调度、自动运维、实时扩容等服务。人工智能产业用户可通过GN5i搭建微秒级响应的AI服务,在线服务成本减少50%以上。

阿里云异构计算全新升级  全方位使能人工智能产业

与GPU、CPU相比,FPGA更适合非标数据位宽的人工智能、计算金融、基因工程、气象预测等领域。阿里云2017年初推出了基于英特尔Arria 10芯片的FPGA计算实例,已帮助大量用户通过自定义加速算法,实现云上FPGA加速业务的一键部署、快速研发和弹性伸缩,有效提升了人工智能及深度学习的效率,为企业节省成本。

阿里云异构计算全新升级  全方位使能人工智能产业

此次发布的F2实例基于赛灵思Xilinx KU115器件,提供145万逻辑门电路,单实例的单精度浮点计算性能可达1.5TFlops。随着集成英特尔(F1)和赛灵思(F2)芯片的FPGA计算实例相继面世,阿里云率先完成对主流FPGA方案的全覆盖,成为全球FPGA领域产品线最全、场景最多的公共云服务商。再加上阿里云业已推出的FPGA镜像市场,可帮助用户完成更多定制化FPGA加速方案,提高特定业务和算法的效率。

“如果把传统超算中心比作‘珠穆朗玛峰’,那么阿里云的E-HPC则是将高性能计算做更普惠的覆盖,成为高性能计算的‘青藏高原’。阿里云资深专家何万青表示。

阿里云异构计算全新升级  全方位使能人工智能产业

据何万青介绍,此次推出的基于阿里云异构平台的全新高性能计算实例E-HPC,有四大特点:便捷、互通、弹性、安全。 依托阿里云E-HPC弹性高性能计算提供的PaaS平台,通过调用OpenAPI创建阿里云基础架构层IaaS产品,包括弹性计算ECS资源,虚拟专用网VPC,异构计算资源,高性能高可靠和横向扩展的NAS资源等产品。

通过现场的演示可以看到,只需硬件配置、软件配置、基础配置,最后生成,就可以快速生成一台属于自己的高性能计算机,为科研人员、企业构建了一整套科学家、程序员熟悉的并行计算软件环境。

弹性和灵活性,是阿里云和传统超算中心的主要的差异化竞争点。阿里云希望搭建一个平台,把计算力输出给我们的客户,这是我们的一个初衷。” 阿里云异构计算负责人张献涛最后表示。 


本文作者:赵立京

来源:51CTO

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
人工智能 运维 安全
阿里云通过ISO42001人工智能管理认证,引领AI治理推动协同共治
9月19日,在杭州云栖大会「AI治理与安全论坛」上,阿里云宣布通过人工智能技术的全生命周期管理ISO42001体系认证。该项认证由国际标准化组织(ISO)和国际电工委员会(IEC)制定,是第一部可认证的人工智能国际管理体系标准。
136 14
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
27天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
4月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多样化的选择,包括CPU+GPU、CPU+FPGA等多种配置,适用于人工智能、机器学习和深度学习等计算密集型任务。其中,GPU服务器整合高性能CPU平台,单实例可实现最高5PFLOPS的混合精度计算能力。根据不同GPU类型(如NVIDIA A10、V100、T4等)和应用场景(如AI训练、推理、科学计算等),价格从数百到数千元不等。详情及更多实例规格可见阿里云官方页面。
266 1
|
4月前
|
机器学习/深度学习 存储 人工智能
【ACL2024】阿里云人工智能平台PAI多篇论文入选ACL2024
近期,阿里云人工智能平台PAI的多篇论文在ACL2024上入选。论文成果是阿里云与阿里集团安全部、华南理工大学金连文教授团队、华东师范大学何晓丰教授团队共同研发。ACL(国际计算语言学年会)是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台PAI在自然语言处理和多模态算法、算法框架能力方面研究获得了学术界认可。
|
4月前
|
机器人 C# 人工智能
智能升级:WPF与人工智能的跨界合作——手把手教你集成聊天机器人,打造互动新体验与个性化服务
【8月更文挑战第31天】聊天机器人已成为现代应用的重要组成部分,提供即时响应、个性化服务及全天候支持。随着AI技术的发展,聊天机器人的功能日益强大,不仅能进行简单问答,还能实现复杂对话管理和情感分析。本文通过具体案例分析,展示了如何在WPF应用中集成聊天机器人,并通过示例代码详细说明其实现过程。使用Microsoft的Bot Framework可以轻松创建并配置聊天机器人,增强应用互动性和用户体验。首先,需在Bot Framework门户中创建机器人项目并编写逻辑。然后,在WPF应用中添加聊天界面,实现与机器人的交互。
113 0
|
5月前
|
机器学习/深度学习 SQL 人工智能
人工智能平台PAI使用问题之如何在阿里云服务器上搭建自己的人工智能
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
16天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
16天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
16天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
60 3