数据可视化的7个好处

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

译者注:大量研究结果表明人类通过图形获取信息的速度比通过阅读文字获取信息的速度要快很多,那么将数字以可视化的形式展示出来还有其它什么好处,本文详细列举了7种优势。以下为译文。

数据可视化是指以饼状图等图形的方式展示数据。这帮助用户能够更快地识别模式。交互式可视化能够让决策者深入了解细节层次。这种展示方式的改变使得用户可以查看分析背后的事实。

以下是数据可视化影响企业做决策和战略调整的七种方式。

1.动作更快

人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的报告或电子表格更快。

这提供了一种非常清晰的沟通方式,使业务领导者能够更快地理解和处理他们的信息。大数据可视化工具可以提供实时信息,使利益相关者更容易对整个企业进行评估。对市场变化更快的调整和对新机会的快速识别是每个行业的竞争优势。

2.以建设性方式讨论结果

向高级管理人员提交的许多业务报告都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。

然而,来自大数据可视化工具的报告使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素以及类似于热图、fever charts等新的可视化工具,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。

3.理解运营和结果之间的连接

大数据可视化的一个好处是,它允许用户去跟踪运营和整体业务性能之间的连接。在竞争环境中,找到业务功能和市场性能之间的相关性是至关重要的。

例如,一家软件公司的执行销售总监可能会立即在条形图中看到,他们的旗舰产品在西南地区的销售额下降了8%。然后,主管可以深入了解这些差异发生在哪里,并开始制定计划。通过这种方式,数据可视化可以让管理人员立即发现问题并采取行动。

4.接受新兴趋势

现在已经收集到的消费者行为的数据量可以为适应性强的公司带来许多新的机遇。然而,这需要他们不断地收集和分析这些信息。通过使用大数据可视化来监控关键指标,企业领导人可以更容易发现各种大数据集的市场变化和趋势。

例如,一家服装连锁店可能会发现,在西南地区,深色西装和领带的销量正在上升。这可能会让他们推销包括这两种服装在内的服装,或者是一种新的窄领带,远远领先于那些尚未注意到这一潮流的竞争对手。

5.与数据交互

数据可视化的主要好处是它及时带来了风险变化。但与静态图表不同,交互式数据可视化鼓励用户探索甚至操纵数据,以发现其他因素。这就为使用分析提供了更好的意见。 

例如,大型数据可视化工具可以向船只制造商展示其大型工艺的销售下降。这可能是由于一系列原因造成的。但团队成员积极探索相关问题,并将其与实际的船销售联系起来,可以找出根源,并找到减少其影响的方法,以推动更多的销售。

6.创建新的讨论

大数据可视化的一个优点是它提供了一种现成的方法来从数据中讲述故事。热图可以在多个地理区域显示产品性能的发展,使用户更容易看到性能良好或表现不佳的产品。这使得高管们可以深入到特定的地点,看看哪些地方做得好,哪些做得不好。

他们可能会认识到,瞄准较高收入市场的细分市场并不会销售价格更高的产品,或者传统的清洁产品销售比环保绿色产品更不受欢迎。这些见解可以被用来集思广益,头脑风暴,以支持更高的销售。

大数据可视化工具提供了一种更有效的使用操作型数据的方法。对于更大多数的商业领袖来说,实时性能和市场指标的变化更容易识别和应对。

7.机器学习:来吧,来吧

围绕机器学习的所有炒作都快将变成现实了。除了一些大公司,比如亚马逊、谷歌正在利用机器学习来消除垃圾邮件,Pinterest利用机器学习向用户展示相关内容,Yelp使用机器学习来整理用户上传的照片。甚至是Disqus这样的公司也在使用机器学习来清除垃圾信息。现在就准备开始将机器学习应用到你自己的或者客户的业务领域里面去吧。

Home Depot使用机器学习来帮助用户更快地找到产品,甚至像Lyst这样的小公司也使用机器学习来帮助客户找到任意一种查询的相关信息。

客户服务正被机器学习的能力所改变,它能够解释客户的电子邮件,并将其分类,以纠正公司内部的部门或区域。这也就意味着以后可能再也用不到电话沟通的方式了。

机器学习的未来是无限的。


本文作者:Robert Cordray

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
25天前
|
监控 数据可视化 数据挖掘
ThingWorx 是如何实现数据可视化的
ThingWorx通过其强大的数据可视化工具,将复杂的数据转化为直观的图表和仪表板,帮助用户快速理解并分析数据,支持定制化视图以满足不同需求,提升决策效率。
44 12
|
1月前
|
数据可视化 数据挖掘
数据可视化的作用是什么?
【10月更文挑战第30天】数据可视化的作用是什么?
38 0
|
7月前
|
数据可视化 JavaScript 前端开发
如何通过Python实现高效的数据可视化
数据可视化是数据分析领域中非常重要的一环,因为它能够帮助用户更好地理解数据并从中发现隐藏的模式和趋势。Python已经成为数据科学家和分析师最受欢迎的语言之一,因此Python的数据可视化工具也愈加丰富和强大。本文将介绍Python的主要数据可视化工具以及如何使用它们实现高效的数据可视化。
|
5月前
|
数据可视化
数据可视化,优点的相关介绍
数据可视化,优点的相关介绍
|
7月前
|
数据可视化 定位技术
新概念数据可视化
新概念数据可视化
32 0
|
7月前
|
数据可视化 BI 定位技术
数据可视化系列-02各类图表的综合使用介绍及实践-下篇
数据可视化系列-02各类图表的综合使用介绍及实践-下篇
|
7月前
|
数据采集 数据可视化 前端开发
数据可视化系列-02各类图表的综合使用介绍及实践-上篇
数据可视化系列-02各类图表的综合使用介绍及实践-上篇
|
数据采集 数据可视化 数据挖掘
Python数据分析中如何更好地进行数据可视化?
Python数据分析中如何更好地进行数据可视化?
123 0
|
存储 数据可视化 数据挖掘
数据可视化的作用
个人很喜欢《数据可视化》一书中从英文角度的解释,可视化的动词是 visualize,他可以被解释为“使什么看的见、形象化、设想”。 将数据代入进去便是使数据看得见,使数据形象化。更为术语的解释是“生成符合人类感知”的图像。其名词 Visualization 表达使某事某物可见的动作或事实,对某个原本不可见的事物在人的大脑中形成一幅可感知的心理图片的过程或能力。这也一定程度的将可视化的本质原因融入了进去。
数据可视化的作用
|
数据可视化 前端开发 JavaScript
封装库/工具库中重要概念之数据可视化
数据可视化是现代数据分析的重要手段之一,它能够将复杂的数据以图形化的形式呈现,使用户更加直观地理解数据。在前端开发中,封装库/工具库可以帮助我们更加高效地开发数据可视化应用。
110 0