人工智能和机器学习如何帮助IT团队解决数据管理问题

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介:

掌握和处理大量数据对于IT部门来说是一个挑战。以下是人工智能(AI)和机器学习如何帮助人们分类、组织和汇总大量信息的方法。

根据三星公司的调查,2016年全球互联网流量超过了1ZB,即10亿兆字节。这个数字是巨大的,但这个数据量与全球各企业正在存储的全部数据相比还相差甚远。

更重要的是,在大多数公司中,数据处在“管理之下”的这个用词有些不当。

人工智能和机器学习

数据管理挑战的关键领域是:

  • 理解暗数据
  • 数据保留
  • 实现最佳分析结果的数据集成
  • 数据访问

IT部门在这些领域进行艰苦努力的原因如下:

  • 所有类型的输入数据流(其中大部分是非结构化的)太大,无法每天进行管理,因此最终将数据放在任何地方。
  • 电子发现和行业法规对历史数据的法律和审计流程的要求使得业务决策者不愿放弃数据,最终用户并不喜欢在年度审查会议上讨论数据保留政策。
  • 数据集成是IT部门面临的最困难的任务之一,像数据聚合这样的概念在分析中发挥更大的作用才会加强,因此看似不同的数据集合可以组合成可搜索的存储库,用于新型的业务查询。
  • 快速访问数据是一种业务需求,但是高端存储在现场或云端的价格昂贵,因此一些数据必须归档到速度更慢,成本更低的存储空间中。为了解决这些问题,组织管理层将项目的人力物力主要放在了其他重要的目标上。

现在的问题是:机器学习、人工智能(AI)和分析学是否能在数据管理方面提供帮助,特别是对于大量非结构化数据?

以下是机器学习,人工智能和分析可以在以下几个方面提供帮助:

(1) 暗数据排序

每个企业系统和每个业务部门都有一些积累的数据,但是人们对此一无所知。通过使用机器学习并结合其功能与算法,可以解决如何排序和处理存储在服务器上的不同类型的电子邮件,文档,图像等文件,机器学习,人工智能(AI)和分析可以对这个未发布的数据进行处理,而经验丰富,知识渊博的工作人员可以查看和回顾自动化推荐的数据分类方案,调整并执行方案。该过程的一部分还可以解决数据保留问题,其分析将产生一组可能从文件中清除数据的建议。

(2) 决定丢弃哪些数据

机器学习,分析和人工智能(AI)可以客观地识别那些很少使用或从未使用过的数据,并建议工作人员将其丢弃,但它并不具备与工作人员相同的识别能力。例如,这些进程可以选择未访问五年以上的数据或记录,表明数据可能已过时。这样可以节省员工的时间来查找这个潜在的过时数据,因为现在他们需要做的只是确定是否有任何理由保留它。

(3) 汇总数据

当分析开发人员确定需要聚合查询的数据类型时,他们常常为应用程序生成一个存储库,然后从不同的源中提取各种类型的数据,以形成一个分析数据池。要做到这一点,他们必须开发集成方法来访问不同的数据源。机器学习可以通过自动开发数据源和应用程序的数据存储库之间的“映射”,使这种人工过程更加高效。这减少了集成和聚合时间。

(4) 组织数据存储以获得最佳访问

在过去的五年中,由于低成本固态存储的发展,数据存储供应商已经在自动化存储管理方面取得了重大进展。这些技术进步使IT部门能够使用“智能”存储引擎,使用机器学习来查看最常使用哪些类型的数据,哪些数据很少使用或从不使用。根据插入到机器算法中的业务规则,自动化能够以快速存储或慢速存储来自动存储数据。自动化可以让存储管理员不必人工解决存储优化问题。

数据管理是一个主要的IT挑战,在大多数组织中并没有很好的解决方案,这是因为随着数据的不断流入,数据管理将会变得更糟。

首席信息官,数据架构师,以及存储管理者需要向企业高管强调这个问题,但数据管理项目并不容易通过花费费用来解决。

然而,IT经理通过指出数据管理的分析时间,以及可以降低人力和存储成本的价值,至少在与企业管理者讨论如何提高战略敏捷性并降低运营成本的同时,这将成为一个至关重要的切入点。


本文作者:佚名

来源:51CTO

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
3月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
4月前
|
机器学习/深度学习 人工智能 监控
揭秘人工智能:机器学习的魔法
【10月更文挑战第6天】本文将带你走进人工智能的世界,了解机器学习如何改变我们的生活。我们将深入探讨机器学习的原理,以及它在各个领域的应用。同时,我们也会分享一些实用的代码示例,帮助你更好地理解和应用机器学习。无论你是初学者还是专业人士,这篇文章都将为你提供有价值的信息和启示。让我们一起探索这个神奇的领域吧!
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
100 0
|
2月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
109 27
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
72 12
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习在医疗诊断中的应用
【9月更文挑战第32天】随着科技的不断发展,人工智能和机器学习已经在许多领域得到了广泛应用。在医疗领域,它们正在改变着医生和患者的生活。通过分析大量的医疗数据,AI可以帮助医生更准确地诊断疾病,预测患者的病情发展,并提供个性化的治疗方案。本文将探讨人工智能和机器学习在医疗诊断中的具体应用,包括图像识别、自然语言处理和预测分析等方面。我们还将讨论AI技术面临的挑战和未来的发展趋势。
|
3月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
179 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####

热门文章

最新文章