放眼整个AI医疗布局,患者、医务工作者和数据科学家都面临着怎样的机遇和挑战?通过人工智能医疗,患者有个很清晰的机遇可以选择:即从不同渠道收集自己的医疗数据,包括可穿戴设备、自我报告等。数据科学家和机构可以让病人自己选择将数据分享给哪些数据科学家或项目,给他们一个安全的数据环境。
智能医疗
我们需要赋予每个病人收集和维护个人医疗数据的能力,包括:实验室的检测和影像学研究、诊断、用药处方、非处方药和补充剂、其他医疗干预措施、饮食和锻炼记录、家族病史(理想情况下,自动通过链接家庭成员自动维护这些数据)、自我报告进展,比如精力水平、幸福感等,还有基因组学和其他测试。
这意味着患者数据也可以从医疗服务提供者那下载。不论是来自用户还是服务提供者的数据,都需要在计划开始时下载一次,之后可以用API定期追踪患者情况,或者用各种可穿戴设备的APP获取他们的数据了。
每个病患都需要处理他们收到的数据请求,请求一旦增多,病人处理每个单独请求也会很麻烦。在这种情况下,我们可以为病人设置接收规则,自动判断接受、拒绝还是需要人工干预。
每份数据都需用能溯源的方式打上来源标签。当然,一些医疗数据存储量很大,它不一定被存储在病人的设备上。
一旦患者允许项目访问他们的数据,这些数据就需要对研究者公开。研究人员需要的分析环境要足够丰富。这将向他们展示问题的全面信息,并展示如何访问项目数据。
让病人控制数据,让数据科学家有地方施展拳脚是个不错的想法。还有一个更大的机会,即当模型可被持续更新时时,将所有的模型组合在一起。每个数据科学家的特征工程步骤可被保存,并提供给后续研究使用(当被复用时,他们将得到奖励)。此外,他们预先训练的模型激活函数可被自动引入新模型预测能力是否提升。
随着医疗行业的进步,这种收集和分析数据的方法将带来新的见解,并为医务工作者和患者提供所需信息的清晰集合。AI医疗技术(www.lrioh.com)给医护人员和病患提供所需的准确信息,偏远地区的医务工作者看到世界各地的医疗研究,让发达地区的医生诊断更高效准确,在医疗诊断中更方便地了解病人及亲属。