破产的圣文森特医院,如何利用大数据寻求解救方案?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

2010年,纽约著名的圣文森特医院(ST.VINCENT’S hospital)因资金问题申请破产,政府和社区都十分担心周围人民因此受到影响,因此当时的它面临着巨大的社会阻力。

这期间,很多专业人士均在讨论怎么重建医院,并与其他医院进行合作时。

Northewll医疗系统的想法与其他不太一样。

Northewll是美国东北部最大、也是最完整的综合医疗系统之一,覆盖了600多个医疗站点。他们认为在忙着重建之前,先得通过大数据去分析清楚到底是什么主、客观因素导致医院破产,以及应该采用什么样的解决方案。它们认为,医院出现问题是因为社区中的临床需求和居民去医院的原因都发生了变化,需要全新的模式和全新的理念来解决。

贝勒医学院常务副院长Wayne Keathley一直与Northewll公司保持合作,Wayne Keathley谈到,“我们原来没有测试用这种手段去分析,医院哪些地方出了问题,因为没有实际的案例供参考。”

雷锋网了解到,为了分析问题和探索新的解救方案,Northewll从纽约圣文森特医院的改造到推出统计模型机制,帮助医疗机构从最初数据源(历史临床数据、医疗机构变化数据、临床变化的历史(医疗科技的变化)数据、患者行为分析数据、临床需求的预测数据等)搭建可行的模型机制,通过流动护理的变化、复杂临床服务提升效率,通过价格低廉快速投入运行中去,通过定制化被基层医疗机构快速接受。

Northwell Health如何的分析手段

当时的Northewll提出一种全新的概念。

首先,Northwell Health熟知了圣文森特医院经营管理信息后,决定对六大数据信息来源进行分析,寻求解决方案。

历史临床数据

包括整个社区中医院以及其他方的数据。Northwell Health重点分析了这些数据:过去五年中,谁去过医院、去医院的原因、谁去社区医院、谁去医疗站点、谁去其它医院进行治疗,以及他们的护理需求和医疗服务需求。

居住人口变化统计模型

这部分主要包括社区居住人口的变化:如纽约大学的教职员工和学生、老龄化人口(退休人员搬到纽约居住的人口)。与此同时,也预测了接下来5-10年乃至15年中,周边人口的临床服务需求。

新临床技术和护理标准

医疗技术在不断地发生变化,但公众和医院工作人员往往对技术的变化有一定的抗拒心理。现阶段医院临床技术很有可能在未来几年会发生变化,因此需要对这些新技术造成的结果进行预测和分析。

交通模式

纽约的交通特别拥堵,很多人会通过开车、步行、乘坐公共交通工具去医院。在分析医院和临床服务大数据时,也需考虑人们去医院的交通模式。

人口临床需求预测

五年以后人口临床需求将会怎么样?有多少新生儿、有多少老人、有多少癌症新发病例,以及年轻人口有没有增加心血管医院的需求,都需要放在模型中对未来的医疗系统做出预测。

竞争对手分析。

美国医疗体系的竞争很强,医院破产、倒闭,很多时候都是因为竞争对手做得更好、更加便宜、更快,竞争因素也在考虑范围当中。而这些竞争要素包括人数、地理等,基于这些建立可行的模型。

分析6大维度数据后,提出全新的流动医疗护理理念

于医院而言,由于它关闭地非常突然,因此替代计划要快速落实,并投入运转。而且进行定制化,满足社区的需求,在社区中被接受。

在经过对六大数据源进行分析后,Northwell Health提出了全新的流动医疗护理理念。流动医疗护理有着非常复杂的临床服务,为满足社区需要、提高服务质量,流动医疗护理理念有以下内容:

高效可持续、更快速、价格低廉、可定制化以满足社区需求、动态化、模式灵活、“24×7服务”。

流动的医疗护理有非常复杂的临床服务,所以要把它做的更高效,更加可持续。同时需保证它具有动态性,能够适应周边的环境,不断随着时间进行改善。对任何一个现在能够接受的解决方案,在未来很有可能会变得更加复杂,面临更多的挑战,需要不断进行模式改善。

甚至需要细化到,开放24×7服务;具备满足大多数临床需求的能力;创伤、心血管、中风等都应该得到很好的管理和医疗。

这种模式必须持续让人们获得健康医疗服务,并且要做到在某个地方拍的影像,可由其他地区的医生读片。此外,还需要获得其它地方医院的支持和现场的药房服务。不光服务医院的患者,还包括在家的一些患者。此外,设施设备也要足够完善,专业服务能力要有保障,以满足社区里多个年龄层居民的多样需求。

Wayne Keathley指出,目前美国已制定出利用数据,通过医疗数字化,实现协同医疗发展的体制规定。这个案例对当时的纽约非常重要,希望对中国的医疗改革也能有一定的借鉴作用。



本文作者:亚峰
本文转自雷锋网禁止二次转载, 原文链接
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
51 2
|
3月前
|
运维 算法 数据可视化
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】2 方案设计与实现-Python
文章详细介绍了参加2021高校大数据挑战赛中智能运维异常检测与趋势预测任务的方案设计与Python实现,包括问题一的异常点和异常周期检测、问题二的异常预测多变量分类问题,以及问题三的多变量KPI指标预测问题的算法过程描述和代码实现。
75 0
|
1月前
|
存储 NoSQL 大数据
大数据-51 Redis 高可用方案CAP-AP 主从复制 一主一从 全量和增量同步 哨兵模式 docker-compose测试
大数据-51 Redis 高可用方案CAP-AP 主从复制 一主一从 全量和增量同步 哨兵模式 docker-compose测试
33 3
|
1月前
|
SQL 分布式计算 大数据
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(一)
46 0
|
1月前
|
大数据 流计算
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
大数据-108 Flink 快速应用案例 重回Hello WordCount!方案1批数据 方案2流数据(二)
45 0
|
3月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
93 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
3月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
75 2
|
3月前
|
机器学习/深度学习 数据采集 算法
【 2021 MathorCup杯大数据挑战赛 A题 二手车估价】初赛复赛总结、方案代码及论文
总结了2021 MathorCup杯大数据挑战赛A题“二手车估价”的初赛和复赛经验,包括题目要求、解题思路、所用方法和结果,提供了详细的数据分析、模型构建、论文撰写和工具使用技巧,并展示了初赛和复赛的论文。
63 2
|
6月前
|
分布式计算 容灾 大数据
MaxCompute( 原名ODPS)大数据容灾方案与实现(及项目落地实例)专有云
一,背景与概述    复杂系统的灾难恢复是个难题,具有海量数据及复杂业务场景的大数据容灾是个大难题。    MaxCompute是集团内重要数据平台,是自主研发的大数据解决方案,其规模和稳定性在业界都是领先的。
2451 17
|
6月前
|
关系型数据库 分布式数据库 数据处理
【PolarDB 开源】PolarDB 在大数据分析中的应用:海量数据处理方案
【5月更文挑战第25天】PolarDB是解决大数据挑战的关键技术,以其高性能和可扩展性处理大规模数据。通过与数据采集和分析工具集成,构建高效数据生态系统。示例代码显示了PolarDB如何用于查询海量数据。优化策略包括数据分区、索引、压缩和分布式部署,广泛应用于电商、金融等领域,助力企业进行精准分析和决策。随着大数据技术进步,PolarDB将继续发挥关键作用,创造更多价值。
240 0