如何让隐藏在大数据背后的价值发挥出来?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

对于普通人来说,大数据离我们的生活很远,但它的威力已无所不在:信用卡公司追踪客户信息,能迅速发现资金异动,并向持卡人发出警示;能源公司利用气象数据分析,可以轻松选定安装风轮机的理想地点;瑞典首都斯德哥尔摩使用运算程序管理交通,令市区拥堵时间缩短一半……这些都与大数据有着千丝万缕的关系。

如何让隐藏在大数据背后的价值发挥出来?

牛津大学教授维克托·迈尔-舍恩伯格在其新书《大数据时代》中说,这是一场“革命”,将对各行各业带来深刻影响,甚至改变我们的思维方式,但同时它也引发“数据暴政”的担忧。

如今,信息每天都在以爆炸式的速度增长,其复杂性也越来越高,当人类的认知能力受到传统可视化形式的限制时,隐藏在大数据背后的价值就难以发挥出来。理解大数据并借助其做出决策,才能发挥它的巨大价值和无限潜力。

一、大数据有哪些类型?

交易数据

大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。

人为数据

非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。

移动数据

能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。

机器和传感器数据

这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。

二、使用大数据需要用到哪些技术?

可视化分析

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观地呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学地呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速地处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

预测性分析能力

大数据分析最重要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学地建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

语义引擎

大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词或其他输入语义,分析、判断用户需求,从而实现更好的用户体验和广告匹配。

数据质量和数据管理

大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上几个方面,当然更加深入大数据分析的话,还有很多更加有特点的、更加深入的、更加专业的大数据分析方法。 


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
数据采集 机器学习/深度学习 人工智能
大数据分析案例-用RFM模型对客户价值分析(聚类)
大数据分析案例-用RFM模型对客户价值分析(聚类)
1382 0
大数据分析案例-用RFM模型对客户价值分析(聚类)
|
4月前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
174 11
|
5月前
|
机器学习/深度学习 人工智能 分布式计算
理解并利用大数据的力量:解锁数据背后的价值
【8月更文挑战第7天】大数据已成为推动社会进步和经济发展的重要力量。通过理解并利用大数据的力量,企业可以解锁数据背后的价值,优化业务流程、提升决策效率和创新能力。然而,大数据应用也面临着诸多挑战和风险,需要企业不断学习和实践以应对。相信在未来的发展中,大数据将为我们带来更多的惊喜和机遇。
|
6月前
|
存储 算法 数据可视化
云上大数据分析平台:解锁数据价值,驱动智能决策新篇章
实时性与流式处理:随着实时数据分析需求的增加,云上大数据分析平台将更加注重实时性和流式处理能力的建设。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。通过优化计算引擎和存储架构等技术手段,平台将能够实现对数据流的高效处理和分析,为企业提供实时决策支持。
862 8
|
8月前
|
存储 分布式计算 算法
大数据处理:挖掘价值之道
大数据处理:挖掘价值之道
|
8月前
|
存储 数据可视化 大数据
大数据分析与处理:探索数据的深层价值
大数据分析与处理:探索数据的深层价值
122 2
|
8月前
|
存储 数据采集 机器学习/深度学习
大数据分析:挖掘数据价值的技术和方法
在数字化时代,大数据已经成为企业和科研机构的重要资源之一。然而,对于海量的数据如何进行分析和挖掘却是一个巨大的挑战。本文将介绍大数据分析的基本概念、技术和方法,帮助读者了解如何利用现代技术和工具,挖掘数据中蕴藏的价值。
721 0
|
机器学习/深度学习 人工智能 Cloud Native
【大数据趋势白皮书下载】IDC: 发挥数据智能价值,推动企业数字化创新
IDC认为,从提升企业中长期发展质量、降低综合投入成本的角度出发,大数据技术领域将呈现出两个显著趋势:一体化和融合化。企业应以战略和顶层设计为先导,用体系化的思维全面构建大数据能力架构,避免形成新的数据、业务和能力孤岛。 【下载地址见文末】
【大数据趋势白皮书下载】IDC: 发挥数据智能价值,推动企业数字化创新
|
数据采集 机器学习/深度学习 算法
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
1139 0
大数据分析案例-基于RFM模型对电商客户价值分析(聚类)
|
大数据