MessagePack, Protocol Buffers和Thrift序列化框架原理和比较说明

简介:

第1部分 messagepack说明

1.1messagepack的消息编码说明

为什么messagepackjson序列化使用的字节流更少, 可通过图1-1、图1-2有个直观的感觉。

 

1- 1 messagepackjson的格式对比1



1- 2 messagepackjson的格式对比2

messagepack的具体的消息格式如图1-3所示,messagepack的数据类型主要分类两类:固定长度类型和可变长度类型。



 

1- 3 messagepack的消息格式

messagepack的具体类型信息表示如图1-4所示。

 

  
1- 4 messagepack的类型信息

1.2 messagepack的序列化和反序列化方式

现在msgpack能支持基本的数据类型,支持listmap, 还支持自定义的数据类型。例子1, 序列化和反序列化一个javabean, 只要加上@MessagePackMessage的注解。

 

Java代码   收藏代码
  1. /** 
  2.  * 一个用于messagepack测试序列化和反序列的javabean 
  3.  *  
  4.  * @author jimmee 
  5.  */  
  6. @MessagePackMessage   
  7. public class Person {  
  8. /** 编号 */  
  9. public int id;  
  10. /** 名字 */  
  11. public String name;  
  12. /**身高*/  
  13. public double height;  
  14. /** 
  15.  * 默认构造函数 
  16.  */  
  17. public Person() {  
  18. }  

 

 

 

序列化直接调用MessagePackpack方法;反序列化则调用对应的unpack方法。这两个方法,都支持传递序列化和反序列化的数据类型。

1.3 与json的序列化性能对比

如下所示,通过100条数据的序列化和反序列化进行对比。

 

Java代码   收藏代码
  1. List<Map> msgs = new ArrayList<Map>();  
  2. for (int i = 0; i < 100; i++) {  
  3. Map msg = new HashMap();  
  4. msg.put(Const.FID, i);  
  5. msg.put(Const.SUBJECT, "subject" + i);  
  6. msg.put(Const.LABEL0, 1);  
  7. msg.put(Const.FROM, "test@163.com");  
  8. msg.put(Const.TO, "test@126.com");  
  9. msg.put(Const.MODIFIED_DATE, new Date().getTime());  
  10. msg.put(Const.RECEIVED_DATE, new Date().getTime());  
  11. msg.put(Const.SENT_DATE, new Date().getTime());  
  12. msgs.add(msg);  
  13.     }  

 

 

比较结果如表1-1所示。

1- 1 messagepackjson的性能对比

框架

字节大小(byte

序列化时间(ns

反序列化时间(ns

messagepack

12793

2313335

529458

json

17181

 1338371

1776519

 

可以看出,messagepack的序列化字节数比json小将近30%;序列化时间messagepack差不多是json的两倍;反序列化时间,messagepack只需要json30%的时间。

但是,值得注意的是,虽然messagepack的反序列化时间比较少,但是要真正转换为前端需要的类型参数格式,还需要额外的一些时间。

第2部分 protocol buffers

2.1 protocol buffers的消息编码说明

Protocol Buffers支持的数据类型如下图所示:



2- 1 protocol buffers支持的数据类型。

首先对Varint进行说明。Varint 是一种紧凑的表示数字的方法。它用一个或多个字节来示一个数字,值越小的数字使用越少的字节数。这能减少用来表示数字的字节数。

比如对于 int32 类型的数字,一般需要 个 byte 来表示。但是采用 Varint,对于很小的 int32 类型的数字,则可以用 个 byte 来表示。当然,采用 Varint 表示法,大的数字则需要 个 byte 来表示。从统计的角度来说,一般不会所有的消息中的数字都是大数,因此大多数情况下,采用 Varint 后,可以用更少的字节数来表示数字信息。

Varint 中的每个 byte 的最高位 bit 有特殊的含义,如果该位为 1,表示后续的 byte 也是该数字的一部分,如果该位为 0,则结束。其他的 个 bit 都用来表示数字。因此小于 128 的数字都可以用一个 byte 表示。大于 128 的数字,比如 300,会用两个字节来表示:1010 1100 0000 0010

2-2说明了 Google Protocol Buffer 如何解析两个 bytes。注意到最终计算前将两个 byte 的位置相互交换过一次,这是因为 Google Protocol Buffer 字节序采用 little-endian 的方式。


  

2- 2 protocol buffers解析两个字节

消息经过序列化后会成为一个二进制数据流,该流中的数据为一系列的 Key-Value 对,如图2-3所示。


  

2- 3 protocol buffers的消息流

采用这种 Key-Pair 结构无需使用分隔符来分割不同的 Field。对于可选的 Field,如果消息中不存在该 field,那么在最终的 Message Buffer 中就没有该 field,这些特性都有助于节约消息本身的大小。

假设我们生成如下的一个消息Message

 Message.id = 5

 Message.info = “hello”

则最终的 Message Buffer 中有两个 Key-Value 对,一个对应消息中的 id;另一个对应 info

Key 用来标识具体的 field,在解包的时候,Protocol Buffer 根据 Key 就可以知道相应的 Value 应该对应于消息中的哪一个 field

Key 的定义如下:

 (field_number << 3) | wire_type 

可以看到 Key 由两部分组成。第一部分是 field_number。第二部分为 wire_type。表示 Value 的传输类型。

wire type如表2-1所示。

2- 1 wire type说明

Type 

Meaning 

Used For 

Varint 

int32, int64, uint32, uint64, sint32, sint64, bool, enum 

64-bit 

fixed64, sfixed64, double 

Length-delimited 

string, bytes, embedded messages, packed repeated fields 

Start group 

Groups (deprecated) 

End group 

Groups (deprecated) 

32-bit 

fixed32, sfixed32, float 

 

在计算机内,一个负数一般会被表示为一个很大的整数,因为计算机定义负数的符号位为数字的最高位。如果采用 Varint 表示一个负数,那么一定需要 个 byte。为此 Google Protocol Buffer 定义了 sint32sint64 类型,采用 zigzag 编码。

Zigzag 编码用无符号数来表示有符号数字,正数和负数交错,如图2-3所示。使用 zigzag 编码,绝对值小的数字,无论正负都可以采用较少的 byte 来表示,充分利用了 Varint 这种技术。


  

2- 4 ZigZag编码

2.2 protocol buffers的序列化和反序列化

步骤:

创建消息的定义文件.proto

使用protoc工具将proto文件转换为相应语言的源码;

使用类库支持的序列化和反序列化方法进行操作。

 

以同样的数据的操作为例:

1. 定义proto文件messages.ptoto

 

Java代码   收藏代码
  1. message MessageMeta {  
  2.   required int32 id = 1;  
  3.   required string subject = 2;    
  4. optional int32 lablel0 = 3;  
  5. required string from = 4;  
  6. required string to = 5;  
  7. optional int64 modifiedDate = 6;  
  8. optional int64 receivedDate = 7;  
  9. optional int64 sentDate = 8;  
  10. }  

 

 

 

 

Java代码   收藏代码
  1. message MessageMetas {  
  2. repeated MessageMeta msg = 1;  
  3. }  

 

 

2. message.proto文件转换为java语言的源码

例如, 执行命令:protoc -I=src --java_out=out src/messages.proto产生Messagesjava文件。

3. 执行序列化和反序列化

 

Java代码   收藏代码
  1. MessageMetas.Builder msgsBuilder = MessageMetas.newBuilder();  
  2. for (int i = 0; i < 100; i++) {  
  3. MessageMeta.Builder msgBuilder = MessageMeta.newBuilder();  
  4. msgBuilder.setId(i);  
  5. msgBuilder.setSubject("subject" + i);  
  6. msgBuilder.setLablel0(1);  
  7. msgBuilder.setFrom("test@163.com");  
  8. msgBuilder.setTo("test@126.com");  
  9. msgBuilder.setModifiedDate(new Date().getTime());  
  10. msgBuilder.setReceivedDate(new Date().getTime());  
  11. msgBuilder.setSentDate(new Date().getTime());  
  12. msgsBuilder.addMsg(msgBuilder.build());  
  13. }  
  14. MessageMetas msgs = msgsBuilder.build();  

 

 

之后调用相应的writeTo方法进行序列化, 调用parseFrom进行反序列化。

2.3 与json等的性能对比

2- 2 性能对比表格

框架

字节大小(byte

序列化时间(ns

反序列化时间(ns

messagepack

12793

2313335

529458

protocol buffers

6590

941790

408571

json

17181

 1338371

1776519

 

可以看出,protocol buffers在字节流,序列化时间和反序列化时间方面都明显较优(即空间和时间上都比较好)。

第3部分 thrift

thrift的架构如图3-1所示。图3-1显示了创建serverclientstack。最上面的是IDL,然后生成ClientProcessor。红色的是发送的数据。protocoltransport Thrift运行库的一部分。通过Thrift 你只需要关心服务的定义,而不需要关心protocoltransport

Thrift支持 text 和 binary protocolsbinary protocols要比text protocols,但是有时候 text protocols比较有用(例如:调试的时候)。支持的协议有:

TBinaryProtocol 直接的二进制格式

TCompactProtocol 效率和高压缩编码数据

TDenseProtocoal  和TCompactProtocol相似,但是省略了meta信息,从哪里发送的,增加了receiver。还在实验中,java实现还不可用。

TJSONProtocoal使用JSON

TSImpleJSONProtocoal 只写的protocol使用JSON。适合被脚本语言转化

TDebugProtocoal使用人类可读的text 格式 帮助调试


  

3- 1 thrift架构图

上面的protocol 说明了传送的是什么样的数据Thrift transports 则说明了怎样传送这些数据。支持的transport

TSocket 使用 blocking socket I/O

TFramedTransport 以帧的形式发送,每帧前面是一个长度。要求服务器来non-blocking server

TFileTransport 写到文件

TMemoryTransport 使用内存 I/O java实现中在内部使用了ByteArrayOutputStream

TZlibTransport 压缩 使用zlibjava实现中还不可用

最后,thrift 提供了servers

TSimpleServer 单线程server,使用标准的blocking IO用于测试

TThreadPoolServer多线程server 使用标准的blocking IO

TNonblockingServer  多线程 server使用 non-blocking IO java实现中使用了NIO channels),TFramedTransport必须使用在这个服务器。

一个server只允许定义一个接口服务。这样的话多个接口需要多个server。这样会带来资源的浪费。通常可以通过定义一个组合服务来解决。

3.1 thrift的消息编码说明

1. 支持的数据类型

所有编程语言中都可用的关键类型。

bool 布尔值,真或假

byte 有符号字节

i16  16位有符号整数

i32  32位有符号整数

i64  64位有符号整数

double 64位浮点数

string 与编码无关的文本或二进制字符串

可基于基本类型定义结构体,例如:

 

Java代码   收藏代码
  1. struct Example {  
  2. 1:i32 number=10,  
  3. 2:i64 bigNumber,  
  4. 3:double decimals,  
  5. 4:string name="thrifty"  
  6. }  

 

 

支持的容器有list<type>set<type>Map<type1,type2>

若使用TCompactProtocol,传递的消息形式如图3-2所示:

 

 

3- 2 thriftcompact方式的消息流

在这种方式下,对整数而言,也是采用可变长度的方式进行实现。一个字节,最高位表示是否还有数据,低7位是实际的数据,如图3-3所示, 整数106903的编码, 相比普通的int类型,节省一个字节。


  

3- 3 compact方式对一个整数106903进行编码

3.2thrift的序列化和反序列化方式

步骤:

创建thrift接口定义文件;

thrift的定义文件转换为对应语言的源代码;

选择相应的protocol,进行序列化和反序列化。

仍以同样的数据对象为例子:

定义thrift文件messages.thrift

 

Java代码   收藏代码
  1. struct MessageMeta {  
  2.   1:i32 id;  
  3.   2:string subject;    
  4. 3:i32 lablel0;  
  5. 4:string from;  
  6. 5:string to;  
  7. 6:i64 modifiedDate;  
  8. 7:i64 receivedDate;  
  9. 8:i64 sentDate;  
  10. }  
  11.    
  12. struct MessageMetas {  
  13. 1:list<MessageMeta> msgs;  
  14. }  

 

 

 

2. 将定义的文件转换成相应的java源码

执行命令:thrift -gen java messages.thrift

3. 执行序列化和反序列化

 

Java代码   收藏代码
  1. MessageMetas msgs = new MessageMetas();  
  2. List<MessageMeta> msgList = new ArrayList<MessageMeta>();  
  3. for (int i = 0; i < 100; i++) {  
  4. MessageMeta msg = new MessageMeta();  
  5. msg.setId(i);  
  6. msg.setSubject("subject" + i);  
  7. msg.setLablel0(1);  
  8. msg.setFrom("test@163.com");  
  9. msg.setTo("test@126.com");  
  10. msg.setModifiedDate(new Date().getTime());  
  11. msg.setReceivedDate(new Date().getTime());  
  12. msg.setSentDate(new Date().getTime());  
  13. msgList.add(msg);  
  14. }  
  15. msgs.setMsgs(msgList);  
  16. // 序列化  
  17. ByteArrayOutputStream out = new ByteArrayOutputStream();  
  18. TTransport trans = new TIOStreamTransport(out);  
  19. TBinaryProtocol tp = new TBinaryProtocol(trans);  
  20. msgs.write(tp);  
  21.    
  22. byte [] buf = out.toByteArray();  
  23. // 反序列化  
  24. ByteArrayInputStream in = new ByteArrayInputStream(buf);  
  25. trans = new TIOStreamTransport(in);  
  26. tp = new TBinaryProtocol(trans);  
  27. MessageMetas msgs2 = new MessageMetas();  
  28. msgs2.read(tp);  

 

 

3.3json等的性能对比

3- 1 性能对比

框架

字节大小(byte

序列化时间(ns

反序列化时间(ns

messagepack

12793

2313335

529458

protocol buffers

6590

941790

408571

thrift

6530

798696

754458

json

17181

 1338371

1776519

 

通过对比,可以发现thrift总的来说,都比较不错。

第4部分 小结

通过对messagepackprotocol buffers以及thrift的分析,主要分析了这些框架的序列化和反序列化部分的内容。实际上messagepackthrift都还有自己的rpc调用框架。

所有的测试都是在本机上进行,基于100条元数据进行测试。可能不同数据,以及不同的规模,测试结果应该会存在差别,https://github.com/eishay/jvm-serializers/wiki/的有比较好的测试结果说明。根据自己的测试,从性能上说,messagepackprotocol buffers以及thrift都比json好(在测试时,发现messagepack序列化的时间稍微多一些)。

从编程语言上来说,messagepackprotocol buffers以及thrift,当然还包括json,都是支持跨语言的通讯的。

从接口定义的灵活性来(或者是否支持动态类型),messagepackprotocol buffers以及thrift较好,后两者都要预先定义schema并相对固定

 

 实际工作中, 一般都采用protocol buffers或者thrift.

目录
相关文章
|
5月前
|
Java
JDK序列化原理问题之Hessian框架不支持writeObject/readObject方法如何解决
JDK序列化原理问题之Hessian框架不支持writeObject/readObject方法如何解决
|
5月前
|
自然语言处理 JavaScript 前端开发
JDK序列化原理问题之FuryJDK序列化性能问题的如何解决
JDK序列化原理问题之FuryJDK序列化性能问题的如何解决
|
5月前
|
开发框架 缓存 前端开发
基于SqlSugar的开发框架循序渐进介绍(24)-- 使用Serialize.Linq对Lambda表达式进行序列化和反序列化
基于SqlSugar的开发框架循序渐进介绍(24)-- 使用Serialize.Linq对Lambda表达式进行序列化和反序列化
|
5月前
|
XML 存储 JSON
(十二)探索高性能通信与RPC框架基石:Json、ProtoBuf、Hessian序列化详解
如今这个分布式风靡的时代,网络通信技术,是每位技术人员必须掌握的技能,因为无论是哪种分布式技术,都离不开心跳、选举、节点感知、数据同步……等机制,而究其根本,这些技术的本质都是网络间的数据交互。正因如此,想要构建一个高性能的分布式组件/系统,不得不思考一个问题:怎么才能让数据传输的速度更快?
141 1
|
5月前
|
缓存 Java
JDK序列化原理问题之Fury如何实现与JDK序列化100%兼容的如何解决
JDK序列化原理问题之Fury如何实现与JDK序列化100%兼容的如何解决
102 0
|
5月前
|
Java
JDK序列化原理问题之在JDK序列化中不同JDK版本字段不一致的情况如何解决
JDK序列化原理问题之在JDK序列化中不同JDK版本字段不一致的情况如何解决
|
8月前
|
缓存 自然语言处理 JavaScript
万字长文深度解析JDK序列化原理及Fury高度兼容的极致性能实现
Fury是一个基于JIT动态编译的高性能多语言原生序列化框架,支持Java/Python/Golang/C++/JavaScript等语言,提供全自动的对象多语言/跨语言序列化能力,以及相比于别的框架最高20~200倍的性能。
168794 12
|
8月前
|
存储 JSON 编解码
IM通讯协议专题学习(十):初识 Thrift 序列化协议
本文将带你一起初步认识Thrift的序列化协议,包括Binary协议、Compact协议(类似于Protobuf)、JSON协议,希望能为你的通信协议格式选型带来参考。
167 1
|
8月前
|
存储 XML JSON
日常小知识点之序列化结构(protobuf使用及简单原理)
日常小知识点之序列化结构(protobuf使用及简单原理)
226 0
|
8月前
|
存储 Java 开发工具
[Android]序列化原理Parcelable
[Android]序列化原理Parcelable
141 0