使用Python+OpenCV进行图像模板匹配(Match Template)

简介: 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别。模板匹配是在图像中寻找和识别模板的一种简单的方法。以下是具体的步骤及代码。 首先导入所需库文件,numpy和cv2。 #导入所需库文件  import cv2  import numpy as np  然后加载原始图像和要搜索的图像模板。

本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别。模板匹配是在图像中寻找和识别模板的一种简单的方法。以下是具体的步骤及代码。

首先导入所需库文件,numpy和cv2。


 
 
  1. #导入所需库文件 
  2. import cv2 
  3. import numpy as np 

然后加载原始图像和要搜索的图像模板。OpenCV对原始图像进行处理,创建一个灰度版本,在灰度图像里进行处理和查找匹配。然后使用相同的坐标在原始图像中进行还原并输出。


 
 
  1. #加载原始RGB图像 
  2. img_rgb = cv2.imread("photo.jpg"
  3. #创建一个原始图像的灰度版本,所有操作在灰度版本中处理,然后在RGB图像中使用相同坐标还原 
  4. img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) 
  5.   
  6. #加载将要搜索的图像模板 
  7. template = cv2.imread('face.jpg',0) 
  8. #记录图像模板的尺寸 
  9. w, h = template.shape[::-1] 

这里我们分别输出并查看原始图像,原始图像的灰度版本,以及图像模板。


 
 
  1. #查看三组图像(图像标签名称,文件名称) 
  2. cv2.imshow('rgb',img_rgb) 
  3. cv2.imshow('gray',img_gray) 
  4. cv2.imshow('template',template) 
  5. cv2.waitKey(0) 
  6. cv2.destroyAllWindows() 

使用matchTemplate在原始图像中查找并匹配图像模板中的内容,并设置阈值。


 
 
  1. #使用matchTemplate对原始灰度图像和图像模板进行匹配 
  2. res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED) 
  3. #设定阈值 
  4. threshold = 0.7 
  5. #res大于70% 
  6. loc = np.where( res >= threshold) 

匹配完成后在原始图像中使用灰度图像的坐标对原始图像进行标记。


 
 
  1. #使用灰度图像中的坐标对原始RGB图像进行标记 
  2. for pt in zip(*loc[::-1]): 
  3.     cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (7,249,151), 2) 
  4. #显示图像     
  5. cv2.imshow('Detected',img_rgb) 
  6. cv2.waitKey(0) 
  7. cv2.destroyAllWindows() 

以下为完整代码:


 
 
  1. def mathc_img(image,Target,value): 
  2.     import cv2 
  3.     import numpy as np 
  4.     img_rgb = cv2.imread(image) 
  5.     img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) 
  6.     template = cv2.imread(Target,0) 
  7.     w, h = template.shape[::-1] 
  8.     res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED) 
  9.     threshold = value 
  10.     loc = np.where( res >= threshold) 
  11.     for pt in zip(*loc[::-1]): 
  12.         cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (7,249,151), 2)    
  13.     cv2.imshow('Detected',img_rgb) 
  14.     cv2.waitKey(0) 
  15.     cv2.destroyAllWindows() 

 
 
  1. image=("photo.jpg"
  2. Target=('face.jpg'
  3. value=0.9 
  4. mathc_img(image,Target,value) 

【编辑推荐】

相关文章
|
3月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
107 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
7天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
65 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
54 3
|
2月前
|
存储 JSON API
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
62 7
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(1)
|
3月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
138 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
114 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2月前
|
JSON API 数据格式
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
56 0
Python| 如何使用 DALL·E 和 OpenAI API 生成图像(2)
|
3月前
|
机器学习/深度学习 计算机视觉 Python
opencv环境搭建-python
本文介绍了如何在Python环境中安装OpenCV库及其相关扩展库,包括numpy和matplotlib,并提供了基础的图像读取和显示代码示例,同时强调了使用Python虚拟环境的重要性和基本操作。
|
2月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
477 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
3月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
52 4