Facebook开源 PyTorch版 fairseq,准确性最高、速度比循环神经网络快9倍

简介: 今年5月,Facebook AI研究院(FAIR)发表了他们的研究成果fairseq,在fairseq中,他们使用了一种新型的卷积神经网络来做语言翻译,比循环神经网络的速度快了9倍,而且准确性也是现有模型中最高的。

今年5月,Facebook AI研究院(FAIR)发表了他们的研究成果fairseq,在fairseq中,他们使用了一种新型的卷积神经网络来做语言翻译,比循环神经网络的速度快了9倍,而且准确性也是现有模型中最高的。此外,他们在GitHub公布了fair序列建模工具包的源代码和训练好的系统,其他的研究者可以在此基础上建立自己的关于翻译、文本总结和其他任务的模型。

详情可参见快9倍!Facebook开源机器学习翻译项目fairseq一文。

日前,Facebook AI研究团队又在GitHub上开源了fairseq PyTorch版本。

相关介绍

fairseq是Facebook AI研究院发布的一个序列到序列的学习工具,它的原作者(排名不分先后)是Sergey Edunov、Myle Ott和Sam Gross。该工具包能实现 Convolutional Sequence to Sequence Learning(地址:https://arxiv.org/abs/1705.03122)中描述的全卷积模型,并能在一台机器上进行多GPU训练,也能在CPU和GPU上快速产生束搜索(beam search)。在开源的数据中,他们提供了英译法和英译德的预训练模型。

Facebook开源 PyTorch版 fairseq,准确性最高、速度比循环神经网络快9倍

引用

如果你的论文中用了FAIR的相关代码,可以这样引用:

@inproceedings{gehring2017convs2s,
 author    = {Gehring, Jonas, and Auli, Michael and Grangier, David and Yarats, Denis and Dauphin, Yann N},
 title     = "{Convolutional Sequence to Sequence Learning}",
 booktitle = {Proc. of ICML},
 year      = 2017,
}

工具和安装

  • macOS或是Linux系统的电脑

  • 要是想训练新的模型,需要用到NVIDIA GPU和NCCL(https://github.com/NVIDIA/nccl)

  • Python 3.6

  • 安装PyTorchhttp://pytorch.org/)

目前的fairseq-py需要从GitHub库中获得PyTorch,有多种方式安装它。我们建议利用Miniconda3,执行如下的步骤。

1、安装Miniconda3(https://conda.io/miniconda.html);激活 Python 3环境

2、安装PyTorch

conda install gcc numpy cudnn nccl
conda install magma-cuda80 -c soumith
pip install cmake
pip install cffi

git clone https://github.com/pytorch/pytorch.git
cd pytorch
git reset --hard a03e5cb40938b6b3f3e6dbddf9cff8afdff72d1b
git submodule update --init
pip install -r requirements.txt

NO_DISTRIBUTED=1 python setup.py install

3、在GitHub中复制和执行如下代码来安装fairseq-py

pip install -r requirements.txt
python setup.py build
python setup.py develop

快速开始

你将需要使用到如下的命令:

  • python preprocess.py: 数据预处理: 构造词汇和二进制训练数据

  • python train.py: 在一个或多个GPU上训练新的模型

  • python generate.py: 用训练好的模型翻译预处理之后的数据

  • python generate.py -i:用训练好的模型翻译新的文本

  • python score.py: 通过与参考译文对比,给出生成译文的BLEU分数

评估预训练模型:

首先,下载预训练好的模型和词汇:

$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2 | tar xvjf -

模型中用的是BPE词汇(https://arxiv.org/abs/1508.07909),用户必须在翻译之前将编码应用到源文本。可以用apply_bpe.py 脚本中的wmt14.en-fr.fconv-cuda/bpecodes文件。@@是延续标记,原始文本可以通过sed s/@@ //g来恢复,此外把 --remove-bpe 标记传递到generate.py也有同样的作用。在生成BPE词汇之前。输入文本需要用mosesdecoder中的tokenizer.perl来标记。

下面是利用python generate.py -i产生翻译的例子, beam size为5:

$ MODEL_DIR=wmt14.en-fr.fconv-py
$ python generate.py -i \
--path $MODEL_DIR/model.pt $MODEL_DIR \
--beam 5
| [en] dictionary: 44206 types
| [fr] dictionary: 44463 types
| model fconv_wmt_en_fr
| loaded checkpoint /private/home/edunov/wmt14.en-fr.fconv-py/model.pt (epoch 37)
> Why is it rare to discover new marine mam@@ mal species ?
S       Why is it rare to discover new marine mam@@ mal species ?
O       Why is it rare to discover new marine mam@@ mal species ?
H       -0.08662842959165573    Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins ?
A       0 1 3 3 5 6 6 10 8 8 8 11 12

训练新模型

数据预处理

fairseq-py工具包中包含用于IWSLT 2014德转英语料库的一个预处理脚本样例。先将数据进行预处理和二进制编码:

$ cd data/
$ bash prepare-iwslt14.sh
$ cd ..
$ TEXT=data/iwslt14.tokenized.de-en
$ python preprocess.py --source-lang de --target-lang en \
 --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
 --thresholdtgt 3 --thresholdsrc 3 --destdir data-bin/iwslt14.tokenized.de-en

这将会得到能够用于训练模型的二进制数据。

训练

用python train.py来训练新的模型,下面是能很好的适于 IWSLT 2014数据集中的一些样例设置。

$ mkdir -p checkpoints/fconv
$ CUDA_VISIBLE_DEVICES=0 python train.py data-bin/iwslt14.tokenized.de-en \
 --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
 --arch fconv_iwslt_de_en --save-dir checkpoints/fconv

默认情况下,python train.py会占用电脑中所有可用的GPU,可以用CUDA_VISIBLE_DEVICES环境来选择特定的GPU,或者改变使用的GPU数目。

有一点需要注意,batch大小是基于每个batch的最大token数来设置的,你需要基于系统中可用的GPU内存,选取一个稍小的值。

生成翻译

模型训练好之后就能利用python generate.py(用于二进制数据)或python generate.py -i(用于未处理文本)生成翻译了。

$ python generate.py data-bin/iwslt14.tokenized.de-en \
 --path checkpoints/fconv/checkpoint_best.pt \
 --batch-size 128 --beam 5
 | [de] dictionary: 35475 types
 | [en] dictionary: 24739 types
 | data-bin/iwslt14.tokenized.de-en test 6750 examples
 | model fconv
 | loaded checkpoint trainings/fconv/checkpoint_best.pt
 S-721   danke .
 T-721   thank you .
 ...

如果只想用一个CPU,加入--cpu标记。可以通过--remove-bpe移除掉BPE标记。

训练好的模型

目前开源的全卷积序列到序列模型如下:

  • wmt14.en-fr.fconv-py.tar.bz2(https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2): 用于WMT14英译法的模型,包含词汇

  • wmt14.en-de.fconv-py.tar.bz2(https://s3.amazonaws.com/fairseq-py/models/wmt14.en-de.fconv-py.tar.bz2): 用于WMT14英译德的模型,包含词汇

针对以上模型,已经预处理和编码过的测试集如下:

  • wmt14.en-fr.newstest2014.tar.bz2(https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.newstest2014.tar.bz2): 用于WMT14英译法的newstest2014测试集

  • wmt14.en-fr.ntst1213.tar.bz2(https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.ntst1213.tar.bz2): 用于WMT14英译法的newstest2012和newstest2013测试集

  • wmt14.en-de.newstest2014.tar.bz2(https://s3.amazonaws.com/fairseq-py/data/wmt14.en-de.newstest2014.tar.bz2): 用于WMT14英译德的newstest2014测试集

下面是在一块GTX-1080ti上利用测试集产生结果的样例(英译德),运行在batch模式下:

$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2 | tar xvjf - -C data-bin
$ curl https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.newstest2014.tar.bz2 | tar xvjf - -C data-bin
$ python generate.py data-bin/wmt14.en-fr.newstest2014  \
 --path data-bin/wmt14.en-fr.fconv-py/model.pt \
 --beam 5 --batch-size 128 --remove-bpe | tee /tmp/gen.out
...
| Translated 3003 sentences (95451 tokens) in 81.3s (1174.33 tokens/s)
| Generate test with beam=5: BLEU4 = 40.23, 67.5/46.4/33.8/25.0 (BP=0.997, ratio=1.003, syslen=80963, reflen=81194)

# Scoring with score.py:
$ grep ^H /tmp/gen.out | cut -f3- > /tmp/gen.out.sys
$ grep ^T /tmp/gen.out | cut -f2- > /tmp/gen.out.ref
$ python score.py --sys /tmp/gen.out.sys --ref /tmp/gen.out.ref
BLEU4 = 40.23, 67.5/46.4/33.8/25.0 (BP=0.997, ratio=1.003, syslen=80963, reflen=81194)



本文作者:Non
本文转自雷锋网禁止二次转载, 原文链接
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
245 1
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现
【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
190 59
|
2月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
47 0
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
|
6月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
86 1
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别
【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别

热门文章

最新文章