FU-A分包方式,以及从RTP包里面得到H.264数据和AAC数据的方法-阿里云开发者社区

开发者社区> 杨粼波> 正文

FU-A分包方式,以及从RTP包里面得到H.264数据和AAC数据的方法

简介:
+关注继续查看

RFC3984是H.264的baseline码流在RTP方式下传输的规范,这里只讨论FU-A分包方式,以及从RTP包里面得到H.264数据和AAC数据的方法。

1、单个NAL包单元

12字节的RTP头后面的就是音视频数据,比较简单。一个封装单个NAL单元包到RTP的NAL单元流的RTP序号必须符合NAL单元的解码顺序。

2、FU-A的分片格式
数据比较大的H264视频包,被RTP分片发送。12字节的RTP头后面跟随的就是FU-A分片:
FU indicator有以下格式:
      +---------------+
      |0|1|2|3|4|5|6|7|
      +-+-+-+-+-+-+-+-+
      |F|NRI|  Type   |
      +---------------+
   FU指示字节的类型域 Type=28表示FU-A。。NRI域的值必须根据分片NAL单元的NRI域的值设置。
 
   FU header的格式如下:
      +---------------+
      |0|1|2|3|4|5|6|7|
      +-+-+-+-+-+-+-+-+
      |S|E|R|  Type   |
      +---------------+
   S: 1 bit
   当设置成1,开始位指示分片NAL单元的开始。当跟随的FU荷载不是分片NAL单元荷载的开始,开始位设为0。
   E: 1 bit
   当设置成1, 结束位指示分片NAL单元的结束,即, 荷载的最后字节也是分片NAL单元的最后一个字节。当跟随的FU荷载不是分片NAL单元的最后分片,结束位设置为0。
   R: 1 bit
   保留位必须设置为0,接收者必须忽略该位。
   Type: 5 bits
   NAL单元荷载类型定义见下表


表1.  单元类型以及荷载结构总结
      Type   Packet      Type name                       
      ---------------------------------------------------------
      0      undefined                                    -
      1-23   NAL unit    Single NAL unit packet per H.264  
      24     STAP-A     Single-time aggregation packet    
      25     STAP-B     Single-time aggregation packet    
      26     MTAP16    Multi-time aggregation packet     
      27     MTAP24    Multi-time aggregation packet     
      28     FU-A      Fragmentation unit                
      29     FU-B      Fragmentation unit                 
      30-31  undefined                                    -
3、拆包和解包

拆包:当编码器在编码时需要将原有一个NAL按照FU-A进行分片,原有的NAL的单元头与分片后的FU-A的单元头有如下关系:
原始的NAL头的前三位为FU indicator的前三位,原始的NAL头的后五位为FU header的后五位,FU indicator与FU header的剩余位数根据实际情况决定。
 
解包:当接收端收到FU-A的分片数据,需要将所有的分片包组合还原成原始的NAl包时,FU-A的单元头与还原后的NAL的关系如下:
还原后的NAL头的八位是由FU indicator的前三位加FU header的后五位组成,即:
nal_unit_type = (fu_indicator & 0xe0) | (fu_header & 0x1f)

4、代码实现

从RTP包里面得到H264视频数据的方法:

 
 // 功能:解码RTP H.264视频
 // 参数:1.RTP包缓冲地址 2.RTP包数据大小 3.H264输出地址 4.输出数据大小
 // 返回:true:表示一帧结束  false:FU-A分片未结束或帧未结束 
 
#define  RTP_HEADLEN 12 
 bool  UnpackRTPH264( void   *  bufIn,  int  len,   void **  pBufOut,   int   *  pOutLen)
ExpandedBlockStart.gif {
     * pOutLen  =   0 ;
     if  (len  <  RTP_HEADLEN)
ExpandedSubBlockStart.gif     {
         return   false ;
    } 

 
    unsigned  char *  src  =  (unsigned  char * )bufIn  +  RTP_HEADLEN;
    unsigned  char  head1  =   * src; // 获取第一个字节 
 
    unsigned  char  head2  =   * (src + 1 ); // 获取第二个字节 
 
    unsigned  char  nal  =  head1  &   0x1f ; // 获取FU indicator的类型域, 
 
    unsigned  char  flag  =  head2  &   0xe0 ; // 获取FU header的前三位,判断当前是分包的开始、中间或结束 
 
    unsigned  char  nal_fua  =  (head1  &   0xe0  |  (head2  &   0x1f ); // FU_A nal 
 
     bool  bFinishFrame  =   false ;
     if  (nal == 0x1c ) // 判断NAL的类型为0x1c=28,说明是FU-A分片 
ExpandedSubBlockStart.gif 
     { // fu-a 
 
         if  (flag == 0x80 ) // 开始 
ExpandedSubBlockStart.gif 
         {
             * pBufOut  =  src - 3 ;
             * (( int * )( * pBufOut))  =   0x01000000  ; // zyf:大模式会有问题 
 
             * (( char * )( * pBufOut) + 4  =  nal_fua;
             *  pOutLen  =  len  -  RTP_HEADLEN  +   3 ;
        } 

         else   if (flag == 0x40 ) // 结束 
ExpandedSubBlockStart.gif 
         {
             * pBufOut  =  src + 2 ;
             *  pOutLen  =  len  -  RTP_HEADLEN  -   2 ;
        } 

         else // 中间 
ExpandedSubBlockStart.gif 
         {
             * pBufOut  =  src + 2 ;
             *  pOutLen  =  len  -  RTP_HEADLEN  -   2 ;
        } 

    } 

     else // 单包数据 
ExpandedSubBlockStart.gif 
     {
         * pBufOut  =  src - 4 ;
         * (( int * )( * pBufOut))  =   0x01000000 ; // zyf:大模式会有问题 
 
         *  pOutLen  =  len  -  RTP_HEADLEN  +   4 ;
    } 

 
    unsigned  char *  bufTmp  =  (unsigned  char * )bufIn;
     if  (bufTmp[ 1  &   0x80 )
ExpandedSubBlockStart.gif     {
        bFinishFrame  =   true ; // rtp mark 
 
    } 

     else 
ExpandedSubBlockStart.gif      {
        bFinishFrame  =   false ;
    } 

     return  bFinishFrame;
} 
  


从RTP包里面得到AAC音频数据的方法:

//功能:解RTP AAC音频包,声道和采样频率必须知道。
//参数:1.RTP包缓冲地址 2.RTP包数据大小 3.H264输出地址 4.输出数据大小
//返回:true:表示一帧结束  false:帧未结束 一般AAC音频包比较小,没有分片。
bool UnpackRTPAAC(void * bufIn, int recvLen, void** pBufOut,  int* pOutLen)
ExpandedBlockStart.gif{
    unsigned char*  bufRecv = (unsigned char*)bufIn;
    //char strFileName[20];
    
ExpandedSubBlockStart.gif    unsigned char ADTS[] = {0xFF, 0xF1, 0x00, 0x00, 0x00, 0x00, 0xFC}
    int audioSamprate = 32000;//音频采样率
    int audioChannel = 2;//音频声道 1或2
    int audioBit = 16;//16位 固定
    switch(audioSamprate)
ExpandedSubBlockStart.gif    {
    case  16000:
        ADTS[2] = 0x60;
        break;
    case  32000:
        ADTS[2] = 0x54;
        break;
    case  44100:
        ADTS[2] = 0x50;
        break;
    case  48000:
        ADTS[2] = 0x4C;
        break;
    case  96000:
        ADTS[2] = 0x40;
        break;
    default:
        break;
    }

    ADTS[3] = (audioChannel==2)?0x80:0x40;

    int len = recvLen - 16 + 7;
    len <<= 5;//8bit * 2 - 11 = 5(headerSize 11bit)
    len |= 0x1F;//5 bit    1            
    ADTS[4] = len>>8;
    ADTS[5] = len & 0xFF;
    *pBufOut = (char*)bufIn+16-7;
    memcpy(*pBufOut, ADTS, sizeof(ADTS));
    *pOutLen = recvLen - 16 + 7;

    unsigned char* bufTmp = (unsigned char*)bufIn;
    bool bFinishFrame = false;
    if (bufTmp[1] & 0x80)
ExpandedSubBlockStart.gif    {
        //DebugTrace::D("Marker");
        bFinishFrame = true;
    }

    else
ExpandedSubBlockStart.gif    {
        bFinishFrame = false;
    }

    return true;
}

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
解决方法:Linux装完显卡驱动后分辨率显示不正常
解决方法:Linux装完显卡驱动后分辨率显示不正常
4 0
寻找通用表征:CVPR 2020上重要的三种解决方案
「道可道,非常道」,AI 领域的表征却一直在向着「常道可道」的方向前进,让可以表征的东西越来越接近「常道」。2017 年,DARPA 提出的第三波机器学习概念 [1] 中,其中一个方向也是找到更加通用的表征,从而让 AI 从当前「精心定义」过的任务中解脱出来,能够完成更加复杂的任务,更进一步接近人类的表现。为了解决这个问题,主要有两个方向——找到新的表征方式 [2](更有效的计算方式或是全新的表征)或是提升当前表征计算方法的通用性 [3, 4]。本文涉及了在今年 CVPR 中提出的三个解决方案
4 0
图片的变形与模糊,是两回事
图片的变形与模糊,是两回事
4 0
自然语言处理预训练模型简历抽取(中文)服务 Java SDK示例
自然语言处理(Natural Language Processing,简称NLP),是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,旨在帮助用户高效的处理文本,已经广泛应用在电商、文娱、司法、公安、金融、医疗、电力等行业客户的多项业务中,取得了良好的效果。可用于搭建内容搜索、内容推荐、舆情识别及分析、文本结构化、对话机器人等智能产品。NLP自学习平台提供了一些预训练的特定领域模型服务。例如:商品评价解析服务、新闻层次分类服务、中文简历抽取、英文简历抽取等。本文将使用Java SDK演示简历抽取(中文)服务以及响应返回json字符串中unicode编码转为中文字符的调用以供参考。
8 0
全网首发:海康录像机中,摄像头的分辨率太低又没有其他选项,怎么办
全网首发:海康录像机中,摄像头的分辨率太低又没有其他选项,怎么办
3 0
摩尔线程正式加入龙蜥社区,国内开源生态再添芯力量
基于龙蜥社区的开放平台,摩尔线程可以为多个重点行业构建安全智能的行业解决方案。
6 0
VirtualBox安装虚拟机后分辨率调不对怎么办
VirtualBox安装虚拟机后分辨率调不对怎么办
4 0
doubango的帧率太低,怎么解决?
doubango的帧率太低,怎么解决?
3 0
jMeter Transaction Controller 学习笔记
jMeter Transaction Controller 学习笔记
3 0
+关注
杨粼波
网游的老兵
1135
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载