完整复现何恺明ICCV获奖论文结果并开源 !(附论文&开源代码)-阿里云开发者社区

开发者社区> 数据派> 正文
登录阅读全文

完整复现何恺明ICCV获奖论文结果并开源 !(附论文&开源代码)

简介:

ICCV 作为计算机视觉的顶级会议,2017年共收到2143篇论文投稿,比上一届ICCV2015的1698篇增加了26.2%。共621篇被选为大会论文,录用比例28.9%;poster、spotlight、oral 比例分别为24.61%、2.61%和2.09%。
组委会根据作者署名统计了不同大学的研究数目,清华大学超过CMU、MIT、ICL、斯坦福以及谷歌名列第一,上海交通大学、北京航空航天大学也在前10当中。

1

而此次大会最大的新闻一定是何恺明大神在 ICCV 上拿下了双best paper!继两次荣获 CVPR 最佳论文奖之后,何恺明参与的两篇最新论文又分别摘下 ICCV 2017 的最佳论文奖(Best Paper Award)和最佳学生论文(Best Student Paper Award)两项大奖。
这两篇获奖论文分别是今年 4 月发布的《Mask R-CNN》以及今年 8 月发布的《Focal Loss for Dense Object Detection》,两者都是今年发布,而且相隔仅仅 4 个月。要知道 ICCV 是计算机视觉领域顶级会议之一,且两年举办一次,而何恺明作为两篇论文的第一作者和第四作者,足以证明他的实力。
两篇获奖论文简介:

2

论文简介:我们提出了一个简单、灵活和通用的对象实例分割框架。我们的方法能有效检测图像中的对象,同时为每个实例生成高质量的 segmentation mask。这种被称为 Mask R-CNN 的方法通过添加用于预测 object mask 的分支来扩展 Faster R-CNN,该分支与用于边界框识别的现有分支并行。Mask R-CNN 训练简单,只需在以 5fps 运行的 Faster R-CNN 之上增加一个较小的 overhead。此外,Mask R-CNN 很容易推广到其他任务,例如它可以允许同一个框架中进行姿态估计。我们在 COCO 系列挑战的三个轨道任务中均取得了最佳成果,包括实例分割、边界对象检测和人关键点检测。没有任何 tricks,Mask R-CNN 的表现优于所有现有的单一模型取得的成绩,包括 COCO 2016 挑战赛的冠军。

论文地址:
https://arxiv.org/abs/1703.06870


3

论文简介:目前准确度最高的目标检测器采用的是一种常在 R-CNN 中使用的 two-stage 方法,这种方法将分类器应用于一个由候选目标位置组成的稀疏样本集。相反,one-stage 检测器则应用于一个由可能目标位置组成的规则密集样本集,而且更快更简单,但是准确度却落后于 two-stage 检测器。在本文中,我们探讨了造成这种现象的原因。
我们发现,在训练密集目标检测器的过程中出现的严重的 foreground-background 类别失衡,是造成这种现象的主要成因。我们解决这种类别失衡(class imbalance )的方案是,重塑标准交叉熵损失,使其减少分类清晰的样本的损失的权重。Focal Loss 将训练集中在一个稀疏的困难样本集上,并防止大量简单负样本在训练的过程中淹没检测器。为了评估该损失的有效性,我们设计并训练了一个简单的密集目标检测器—RetinaNet。试验结果证明,当使用 Focal Loss训练时,RetinaNet 不仅能赶上 one-stage 检测器的检测速度,而且还在准确度上超越了当前所有最先进的 two-stage 检测器。

4

我们提出了一种新的损失函数 Focal Loss(焦点损失),这个损失函数在标准的交叉熵标准上添加了一个因子 (1- pt) γ 。设定 γ > 0 可以减小分类清晰的样本的相对损失(pt > .5),使模型更加集中于困难的错误分类的样本。试验证明,在存在大量简单背景样本(background example)的情况下,我们提出的 Focal Loss 函数可以训练出准确度很高的密集对象检测器。

论文地址
https://arxiv.org/abs/1708.02002

大家纷纷表达对恺明大神的崇拜以及对最优秀的学术研究人员表达敬意。与此同时,很多从业者更关心的问题是:什么时候能看到开源代码?
一家AI科技企业——图森未来表示:致敬大神最好的方式,或许就是完整复现论文结果,然后再开源了。他们完整复现了何恺明大神的论文结果(Mask R-CNN 和 Feature Pyramid Network),并将对应代码进行了开源!这也是第一份能够完整复现何恺明大神论文结果的开源代码。
原文发布时间为:2017-10-26
本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
+ 订阅

官网链接