AI大事件 | 人类理解行为数据集推出,Uber发布自家分布式深度学习框架

简介: 呜啦啦啦啦啦大家好呀,又到了本周的AI大事件时间了。过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?文摘菌带你盘点过去一周AI大事件! 新闻 AlphaGo Zero: 从零开始的学习 来源:DEEPMIND.

呜啦啦啦啦啦大家好呀,又到了本周的AI大事件时间了。过去的一周中AI圈都发生了什么?大佬们互撕了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?文摘菌带你盘点过去一周AI大事件!

新闻


AlphaGo Zero: 从零开始的学习

来源:DEEPMIND.COM:

链接:https://deepmind.com/blog/alphago-zero-learning-scratch/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

上周乃至最近一段时间人工智能领域最大的新闻莫过于AlphaGo Zero的诞生。它比AlphaGo更加强大,可以说是历史上最强的围棋运动员。与AlphaGo不同,AlphaGo Zero跳过了学习人类棋手的对弈,而直接从完全随机的自我对弈开始学习。结果是,AlphaGo超越了人类的水平,并在100场比赛中全部击败了此前的冠军AlphaGo。


英特尔推出了一组针对NVIDIA GPU的新型AI芯片

来源:WWW.THEVERGE.COM

链接:https://www.theverge.com/circuitbreaker/2017/10/17/16488414/intel-ai-chips-nervana-neural-network-processor-nnp

英特尔Nervana神经网络处理器系列(简称NNP)是为了响应机器学习和数据中心的需要而设计的。 NNP芯片是英特尔收购Nervana的直接结果。 目前还没有对该芯片进行过基准测试的报道,芯片的确切细节还不得而知。


准备好和机器人亲密接触了吗

来源:WW.WIRED.COM

链接:https://www.wired.com/2017/10/hiroshi-ishiguro-when-robots-act-just-like-humans/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Hiroshi Ishiguro构建了一个美丽、现实到接近人类的机器人。 在学术上,他正在用他们来理解人与人之间互动的机制。 但他的真正任务是解开互动的本质。

文章&教程


AMA:DeepMind的AlphaGo团队

来源:WWW.REDDIT.COM

链接: https://www.reddit.com/r/MachineLearning/comments/76xjb5/ama_we_are_david_silver_and_julian_schrittwieser/

DeepMind AlphaGo团队的David Silver和Julian Schrittwieser在十月十九号在Reddit上回答了各路网友提出的问题,点击链接即可查看他们对AlphaGo Zero你的新见解和对团队未来目标的计划。


Word Embeddings : 趋势和未来发展方向

来源:RUDER.IO

链接:http://ruder.io/word-embeddings-2017/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Word Embeddings技术(类似word2vec)对NLP领域有很大的影响。 这篇文章解决了他们的一些缺陷,并讨论了最近尝试解决它们的方法。


《The Deep Learning Book》伴读视频

来源:WWW.YOUTUBE.COM

链接:如果你还能的话,去YouTube找吧!:)

《The Deep Learning Book》这本深度学习巨著搭配的视频集合。 视频的各个章节由深度学习领域的各个大佬发表,其中包括作者之一,Ian Goodfellow。 如果你正在阅读这本书,这是一个很好的辅助学习资源。


从仿真进行推广(OpenAI)

来源:BLOG.OPENAI.COM

链接:https://blog.openai.com/generalizing-from-simulation/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

这项新技术允许机器人控制器完全在仿真环境中进行训练并将结果部署在物理机器人上,以便在解决简单任务时对环境中的计划外变化做出反应。


代码,项目&数据

AVA:人类理解行为的数据集

来源:RESEARCH.GOOGLEBLOG.COM

链接:如果你还能的话,去google blog里找吧!

数据集由YouTube的公开提供的视频组成,在空间和时间维度对80个原子动作(例如步行,踢手握手)进行了注释和标签,形成了57.6k的视频片段,96k标记的执行动作,以及210k个动作标签。


Nervana Coach:强化学习框架

来源:COACH.NERVANASYS.COM

链接:http://coach.nervanasys.com/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Nervana Coach是一个基于python的强化学习研究框架,包含许多最先进算法的实现。 该文档还包含各种优秀算法的摘要。


Horovod:Uber的分布式深度学习框架

来源:ENG.UBER.COM

链接:https://eng.uber.com/horovod/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Horovod是一个分布式的TensorFlow训练框架。Horovod的目标是使分布式深度学习能够更快运行并且易于使用。


爆款论文


AlphaGo Zero 的论文(Mastering the game of Go without human knowledge)

来源:WWW.NATURE.COM

链接:https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ&utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

一种完全基于强化学习的算法,没有除了游戏规则之外的人类的数据,引导或领域知识。 AlphaGo成为了它自己的老师:神经网络被训练来用作预测AlphaGo自己的选择。这种神经网络提高了树搜索的强度,实现了更高质量的移动选择和更有效的自我对弈。AlphaGo Zero不但超越了人类的表现,并且在与之前赢得柯洁的AlphaGo版本的对弈中以100-0碾压了对手。


卷积神经网络中类不平衡问题的系统研究

来源:ARXIV.ORG

链接:https://arxiv.org/abs/1710.05381?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

作者系统地研究了类不平衡对卷积神经网络分类性能的影响。他们使用了三个基准数据集,MNIST,CIFAR-10和ImageNet,并比较了几种方法来解决这个问题:过采样,欠采样,两阶段训练以及对类概率进行阈值补偿。


深度学习的泛化

来源:ARXIV.ORG

链接:https://arxiv.org/abs/1710.05468?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

本文解释了为什么深度学习在可能出现大容量、算法不稳定、非鲁棒性的情况下还可以很好地泛化,有效地解决了之前文献中的一个开放问题。基于新的理论观点,本文还提出了一系列新的正则化方法。


多代理沟通中的紧急翻译

来源:ARXIV.ORG– Share

链接:https://arxiv.org/abs/1710.06922?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

本篇论文设置了这样一个游戏,游戏由以两种不同的语言作为母语的代理参加,他们需要相互沟通来解决一个视觉参考任务,只有能够翻译对方的语言并理解

A communication game where two agents, native speakers of their own respective languages, jointly learn to solve a visual referential task. The ability to understand and translate a foreign language emerges as a means to achieve shared goals.

原文发布时间为:2017-10-24

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
1月前
|
人工智能 Cloud Native Java
书本大纲:从芯片、分布式到云计算AI时代
本文深入探讨并发编程、JVM原理、RPC框架、高并发系统、分布式架构及云原生技术,涵盖内存模型、同步机制、垃圾回收、网络协议、存储优化、弹性伸缩等核心议题,揭示多线程运行逻辑与高并发实现路径,助你掌握现代软件底层原理与工程实践。
89 6
|
5月前
|
人工智能 搜索推荐
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
SocioVerse是由复旦大学联合小红书等机构开源的社会模拟框架,基于大语言模型和千万级真实用户数据构建,能精准模拟群体行为并预测社会事件演化趋势。
337 2
「社会实验室」成真!SocioVerse:复旦联合小红书开源社会模拟世界模型,用AI预演群体行为
|
2月前
|
机器学习/深度学习 人工智能 算法
深度强化学习在异构环境中AI Agent行为泛化能力研究
随着人工智能技术的迅猛发展,AI Agent 在游戏、智能制造、自动驾驶等场景中已逐步展现出强大的自适应能力。特别是深度强化学习(Deep Reinforcement Learning, DRL)的引入,使得智能体能够通过与环境的交互,自动学习最优的行为策略。本文将系统性地探讨基于深度强化学习的AI Agent行为决策机制,并结合代码实战加以说明。
深度强化学习在异构环境中AI Agent行为泛化能力研究
|
2月前
|
人工智能 分布式计算 DataWorks
分布式×多模态:当ODPS为AI装上“时空穿梭”引擎
本文深入探讨了多模态数据处理的技术挑战与解决方案,重点介绍了基于阿里云ODPS的多模态数据处理平台架构与实战经验。通过Object Table与MaxFrame的结合,实现了高效的非结构化数据管理与分布式计算,显著提升了AI模型训练效率,并在工业质检、多媒体理解等场景中展现出卓越性能。
|
10月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
578 9
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
379 73
|
7月前
|
机器学习/深度学习 人工智能 监控
AI监控智能化客户行为轨迹分析技术
本方案通过目标跟踪技术(如DeepSORT)和多摄像头协作,实时分析顾客在商场内的行为路径,识别高频活动区域,优化商场布局与商品陈列,提供个性化营销服务。基于深度学习与时序数据分析,精准捕捉顾客动线,提升购物体验与销售转化率。
366 2
|
10月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
1266 3
|
10月前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
441 2

热门文章

最新文章