【Kafka源码】Kafka启动过程

简介:

一般来说,我们是通过命令来启动kafka,但是命令的本质还是调用代码中的main方法,所以,我们重点看下启动类Kafka。源码下下来之后,我们也可以通过直接运行Kafka.scala中的main方法(需要指定启动参数,也就是server.properties的位置)来启动Kafka。因为kafka依赖zookeeper,所以我们需要提前启动zookeeper,然后在server.properties中指定zk地址后,启动。

下面我们首先看一下main()方法:

def main(args: Array[String]): Unit = {

try {
  val serverProps = getPropsFromArgs(args)
  val kafkaServerStartable = KafkaServerStartable.fromProps(serverProps)

  // attach shutdown handler to catch control-c
  Runtime.getRuntime().addShutdownHook(new Thread() {
    override def run() = {
      kafkaServerStartable.shutdown
    }
  })

  kafkaServerStartable.startup
  kafkaServerStartable.awaitShutdown
}
catch {
  case e: Throwable =>
    fatal(e)
    System.exit(1)
}
System.exit(0)

}
我们慢慢来分析下,首先是getPropsFromArgs(args),这一行很明确,就是从配置文件中读取我们配置的内容,然后赋值给serverProps。第二步,KafkaServerStartable.fromProps(serverProps),

object KafkaServerStartable {
def fromProps(serverProps: Properties) = {

KafkaMetricsReporter.startReporters(new VerifiableProperties(serverProps))
new KafkaServerStartable(KafkaConfig.fromProps(serverProps))

}
}
这块主要是启动了一个内部的监控服务(内部状态监控)。

下面是一个在java中常见的钩子函数,在关闭时会启动一些销毁程序,保证程序安全关闭。之后就是我们启动的重头戏了:kafkaServerStartable.startup。跟进去可以很清楚的看到,里面调用的方法是KafkaServer中的startup方法,下面我们重点看下这个方法(比较长):

def startup() {

try {
  info("starting")

  if(isShuttingDown.get)
    throw new IllegalStateException("Kafka server is still shutting down, cannot re-start!")

  if(startupComplete.get)
    return

  val canStartup = isStartingUp.compareAndSet(false, true)
  if (canStartup) {
    metrics = new Metrics(metricConfig, reporters, kafkaMetricsTime, true)

    brokerState.newState(Starting)

    /* start scheduler */
    kafkaScheduler.startup()

    /* setup zookeeper */
    zkUtils = initZk()

    /* start log manager */
    logManager = createLogManager(zkUtils.zkClient, brokerState)
    logManager.startup()

    /* generate brokerId */
    config.brokerId =  getBrokerId
    this.logIdent = "[Kafka Server " + config.brokerId + "], "

    socketServer = new SocketServer(config, metrics, kafkaMetricsTime)
    socketServer.startup()

    /* start replica manager */
    replicaManager = new ReplicaManager(config, metrics, time, kafkaMetricsTime, zkUtils, kafkaScheduler, logManager,
      isShuttingDown)
    replicaManager.startup()

    /* start kafka controller */
    kafkaController = new KafkaController(config, zkUtils, brokerState, kafkaMetricsTime, metrics, threadNamePrefix)
    kafkaController.startup()

    /* start group coordinator */
    groupCoordinator = GroupCoordinator(config, zkUtils, replicaManager, kafkaMetricsTime)
    groupCoordinator.startup()

    /* Get the authorizer and initialize it if one is specified.*/
    authorizer = Option(config.authorizerClassName).filter(_.nonEmpty).map { authorizerClassName =>
      val authZ = CoreUtils.createObject[Authorizer](authorizerClassName)
      authZ.configure(config.originals())
      authZ
    }

    /* start processing requests */
    apis = new KafkaApis(socketServer.requestChannel, replicaManager, groupCoordinator,
      kafkaController, zkUtils, config.brokerId, config, metadataCache, metrics, authorizer)
    requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, config.numIoThreads)
    brokerState.newState(RunningAsBroker)

    Mx4jLoader.maybeLoad()

    /* start dynamic config manager */
    dynamicConfigHandlers = Map[String, ConfigHandler](ConfigType.Topic -> new TopicConfigHandler(logManager, config),
                                                       ConfigType.Client -> new ClientIdConfigHandler(apis.quotaManagers))

    // Apply all existing client configs to the ClientIdConfigHandler to bootstrap the overrides
    // TODO: Move this logic to DynamicConfigManager
    AdminUtils.fetchAllEntityConfigs(zkUtils, ConfigType.Client).foreach {
      case (clientId, properties) => dynamicConfigHandlers(ConfigType.Client).processConfigChanges(clientId, properties)
    }

    // Create the config manager. start listening to notifications
    dynamicConfigManager = new DynamicConfigManager(zkUtils, dynamicConfigHandlers)
    dynamicConfigManager.startup()

    /* tell everyone we are alive */
    val listeners = config.advertisedListeners.map {case(protocol, endpoint) =>
      if (endpoint.port == 0)
        (protocol, EndPoint(endpoint.host, socketServer.boundPort(protocol), endpoint.protocolType))
      else
        (protocol, endpoint)
    }
    kafkaHealthcheck = new KafkaHealthcheck(config.brokerId, listeners, zkUtils, config.rack,
      config.interBrokerProtocolVersion)
    kafkaHealthcheck.startup()

    // Now that the broker id is successfully registered via KafkaHealthcheck, checkpoint it
    checkpointBrokerId(config.brokerId)

    /* register broker metrics */
    registerStats()

    shutdownLatch = new CountDownLatch(1)
    startupComplete.set(true)
    isStartingUp.set(false)
    AppInfoParser.registerAppInfo(jmxPrefix, config.brokerId.toString)
    info("started")
  }
}
catch {
  case e: Throwable =>
    fatal("Fatal error during KafkaServer startup. Prepare to shutdown", e)
    isStartingUp.set(false)
    shutdown()
    throw e
}

}
首先判断是否目前正在关闭中或者已经启动了,这两种情况直接抛出异常。然后是一个CAS的操作isStartingUp,防止线程并发操作启动,判断是否可以启动。如果可以启动,就开始我们的启动过程。

构造Metrics类
定义broker状态为启动中starting
启动定时器kafkaScheduler.startup()
构造zkUtils:利用参数中的zk信息,启动一个zk客户端
启动文件管理器:读取zk中的配置信息,包含__consumer_offsets和__system.topic__。重点是启动一些定时任务,来删除符合条件的记录(cleanupLogs),清理脏记录(flushDirtyLogs),把所有记录写到一个文本文件中,防止在启动时重启所有的记录文件(checkpointRecoveryPointOffsets)。
/**

  • Start the background threads to flush logs and do log cleanup
    */

def startup() {

/* Schedule the cleanup task to delete old logs */
if(scheduler != null) {
  info("Starting log cleanup with a period of %d ms.".format(retentionCheckMs))
  scheduler.schedule("kafka-log-retention", 
                     cleanupLogs, 
                     delay = InitialTaskDelayMs, 
                     period = retentionCheckMs, 
                     TimeUnit.MILLISECONDS)
  info("Starting log flusher with a default period of %d ms.".format(flushCheckMs))
  scheduler.schedule("kafka-log-flusher", 
                     flushDirtyLogs, 
                     delay = InitialTaskDelayMs, 
                     period = flushCheckMs, 
                     TimeUnit.MILLISECONDS)
  scheduler.schedule("kafka-recovery-point-checkpoint",
                     checkpointRecoveryPointOffsets,
                     delay = InitialTaskDelayMs,
                     period = flushCheckpointMs,
                     TimeUnit.MILLISECONDS)
}
if(cleanerConfig.enableCleaner)
  cleaner.startup()

}
下一步,获取brokerId
启动一个NIO socket服务
启动复制管理器:启动ISR超时处理线程
启动kafka控制器:注册session过期监听器,同时启动控制器leader选举
启动协调器
权限认证
开启线程,开始处理请求
开启配置监听,主要是监听zk节点数据变化,然后广播到所有机器
开启健康检查:目前只是把broker节点注册到zk上,注册成功就是活的,否则就是dead
注册启动数据信息
启动成功
等待关闭countDownLatch,如果shutdownLatch变为0,则关闭Kafka

目录
相关文章
|
6月前
|
消息中间件 分布式计算 Kafka
亿万级别Kafka演进之路:可靠性+事务+消息中间件+源码+日志
Kafka起初是由LinkedIn公司采用Scala语言开发的-一个多分区、多副本且基于ZooKeeper协调的分布式消息系统,现已被捐献给Apache基金会。目前Kafka已经定位为一个分布式流式处理平台,它以高吞吐、可持久化、可水平扩展、支持流数据处理等多种特性而被广泛使用。
|
6月前
|
消息中间件 存储 负载均衡
Kafka【付诸实践 01】生产者发送消息的过程描述及设计+创建生产者并发送消息(同步、异步)+自定义分区器+自定义序列化器+生产者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka生产者】
【2月更文挑战第21天】Kafka【付诸实践 01】生产者发送消息的过程描述及设计+创建生产者并发送消息(同步、异步)+自定义分区器+自定义序列化器+生产者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka生产者】
485 4
|
6月前
|
消息中间件 存储 Kafka
【深入浅出 RocketMQ原理及实战】「底层源码挖掘系列」透彻剖析贯穿一下RocketMQ和Kafka索引设计原理和方案
【深入浅出 RocketMQ原理及实战】「底层源码挖掘系列」透彻剖析贯穿一下RocketMQ和Kafka索引设计原理和方案
125 1
|
6月前
|
消息中间件 存储 负载均衡
[AIGC ~ coze] Kafka 消费者——从源码角度深入理解
[AIGC ~ coze] Kafka 消费者——从源码角度深入理解
|
6月前
|
消息中间件 网络协议 Kafka
Kafka【付诸实践 02】消费者和消费者群组+创建消费者实例+提交偏移量(自动、手动)+监听分区再平衡+独立的消费者+消费者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka消费者】
【2月更文挑战第21天】Kafka【付诸实践 02】消费者和消费者群组+创建消费者实例+提交偏移量(自动、手动)+监听分区再平衡+独立的消费者+消费者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka消费者】
208 3
|
6月前
|
存储 Java 关系型数据库
【Kafka+Flume+Mysql+Spark】实现新闻话题实时统计分析系统(附源码)
【Kafka+Flume+Mysql+Spark】实现新闻话题实时统计分析系统(附源码)
141 1
【Kafka+Flume+Mysql+Spark】实现新闻话题实时统计分析系统(附源码)
|
6月前
|
消息中间件 Java 关系型数据库
【Spring Boot+Kafka+Mysql+HBase】实现分布式优惠券后台应用系统(附源码)
【Spring Boot+Kafka+Mysql+HBase】实现分布式优惠券后台应用系统(附源码)
281 2
|
6月前
|
消息中间件 缓存 Kafka
kafka源码解析——第一篇:producer
kafka源码解析——第一篇:producer
82 0
|
6月前
|
消息中间件 Java Shell
Linux【脚本 03】shell脚本离线安装配置集结JDK+InfluxDB+Zookeeper+Kafka(安装文件及脚本源码网盘分享)
Linux【脚本 03】shell脚本离线安装配置集结JDK+InfluxDB+Zookeeper+Kafka(安装文件及脚本源码网盘分享)
62 0
|
6月前
|
消息中间件 分布式计算 大数据
【大数据技术】Spark+Flume+Kafka实现商品实时交易数据统计分析实战(附源码)
【大数据技术】Spark+Flume+Kafka实现商品实时交易数据统计分析实战(附源码)
237 0
下一篇
无影云桌面