浅谈医疗大数据面临的技术挑战

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

医疗大数据的本质是数据。在医疗行业,医生的诊治是一个过程,需要将患者疾病状态或治疗过程记录下来。由于医生对疾病的认识不同,因此所记录的“事实”会有所不同,特别是缺乏经验的医生,经常会忽略记录重要的病历信息,可能因此出现数据丢失,也可能导致所记录的数据没有准确地反映出客观的事实。

医疗大数据

大数据时代,数据来源于外部,不由自己把控。如果获取的是不真实的数据,无法得出有价值的结果,更多情况下可能是误导。所以,一定要认识到,数据并不是越多越好,数据质量非常重要,把握数据的含义也非常重要。

与其他行业的大数据相比,医疗大数据具有数据增长速度快、保存周期长、粒度差异大、数据异构性强、带时空标记、特征维度高、隐私保护要求高等特点。医疗大数据涉及到电子病历、医学影像、医院视频等多种类型的数据,医疗大数据分析的关键技术包括五项。

(1)面向医疗电子病历的结构化信息抽取技术。这项技术主要涉及医疗命名实体及其属性识别、医疗知识图谱构建和医疗知识图谱应用等几个方面。

(2)面向医学影像的数据分析技术。目前的研究主要集中在两个方面,一是医学影像处理研究,包括医学影像的增强、分割、配准、融合以及三维重建等,为医学影像数据应用提供技术支撑。二是医学图像的分析,通过对医学影像的模式识别与分类,实现对医学图像的自动标注。并根据图像的特征及标签为图像建立索引,以实现后期用户的图像检索任务。

(3)面向医院监控视频的智能分析技术。将智能视频监控系统应用于监护中心,可以自动识别医护人员和患者的日常行为(如行走、交谈、诊断、肢体冲突等),并对异常行为实时预警。

(4)医疗大数据的数据治理体系。一方面,从数据驱动出发,在数据层面上实现面向主题(Subject-oriented)的数据组织、多个不同数据源的数据集成、反映医疗数据的时空变化的数据环境,是医疗大数据组织存储的基本要求;另一方面,从平台层面出发,需要利用云技术,构建新的运行环境,满足海量数据的存储要求。目前,国内在该方面的研究亟待加强。

(5)医疗大数据的隐私保护技术。技术层面上,常用的有基于访问控制的技术、基于匿名化的技术和基于数据加密的技术等。近年来,隐私保护和隐私攻击模型同步发展,对各类方法的有效性提出了严峻挑战。近期以差分隐私保护为代表的新的研究方向,成为面向医疗信息发布的隐私保护方法的主流,该方法不关心攻击者拥有多少背景知识,通过向查询或者分析结果中添加适当噪音来达到隐私保护。

如何针对医疗大数据的基本特性,有效突破医疗大数据分析的关键技术已经成为学术界的研究热点之一。美国的医疗大数据应用中,面向医生和患者业务通常较难,很难找到合适的切入点。面向企业的业务相对容易,尤其是针对保险公司和药厂,而医院则相对难一些。

目前,中国医疗大数据应用可以简单分为两大方向:

第一类,是对传统医疗的优化,即服务于医疗机构的大数据应用(包含医院、险企、药企、医疗器械企业等传统医疗行业机构)。是对于传统医疗服务的问题和弊端,利用互联网及大数据技术加以改善和提升,例如,提升患者到医院就诊的流程、优化医院信息管理以及提升临床诊疗效果等;

第二类,是对传统医疗的补充,即服务于大众医疗健康的大数据应用。是针对传统医疗服务未覆盖到的市场需求,利用互联网和大数据技术和服务加以补充,例如:诊前分诊、就诊数据跟踪及信息反馈等个人健康管理服务。

随着政策的引导、互联网技术和大数据应用的提升,能够通过分级诊疗使医疗效率更高,服务更精准,如小微病患者可自行诊疗或到附近的诊所及社区服务站进行医治,大医院等优质的医疗资源更多的是为重大疾病或突发疾病患者提供医疗服务。

目前,中国人口健康状况不容乐观,亚健康人群占比已超过70%,同时人口老龄化趋势明显,高血压、血脂异常、糖尿病患者的人群均已经超过一亿人,朗锐慧康(www.lrioh.com)认为,巨大的医疗健康市场需求呈现无疑,那么互联网及大数据技术也将有着巨大的用武之地。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
1月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
104 2
|
2月前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
176 4
|
1月前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
2月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
4天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
23 2
|
18天前
|
SQL 运维 大数据
轻量级的大数据处理技术
现代大数据应用架构中,数据中心作为核心,连接数据源与应用,承担着数据处理与服务的重要角色。然而,随着数据量的激增,数据中心面临运维复杂、体系封闭及应用间耦合性高等挑战。为缓解这些问题,一种轻量级的解决方案——esProc SPL应运而生。esProc SPL通过集成性、开放性、高性能、数据路由和敏捷性等特性,有效解决了现有架构的不足,实现了灵活高效的数据处理,特别适用于应用端的前置计算,降低了整体成本和复杂度。
|
26天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
63 4
|
1月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
1月前
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。