使用Kubernetes和Docker进行简单的leader选举

简介: 本文讲的是使用Kubernetes和Docker进行简单的leader选举,【编者的话】Kubernetes简化了运行在集群中的服务部署和运维管理,然而,它也简化了这些管理工作的部署。本篇文章将会展示如何在分布式应用系统中使用Kubernetes来简单地运行leader选举。
本文讲的是使用Kubernetes和Docker进行简单的leader选举 【编者的话】Kubernetes简化了运行在集群中的服务部署和运维管理,然而,它也简化了这些管理工作的部署。本篇文章将会展示如何在分布式应用系统中使用Kubernetes来简单地运行leader选举。

概述

为了可靠性和伸缩性,分布式系统通常会复制多个服务任务,但往往有必要指定一个副本作为leader负责协调所有的副本。

通常在leader选举中,一组有机会成为leader的候选者都是可以确认的。这些候选者都竞相宣布自己是leader,其中会有一个候选者脱颖而出成为leader。一旦赢了选举之后,leader将会继续以leader身份发送“心跳”来更新他们的位置。而其它的候选者将会周期性地作出尝试来成为leader,这套机制确保了如果当前的leader由于某些原因失效了,可以快速指定新的leader。

leader选举的实现通常需要任一一套分布式协调系统比如ZooKeeper、etcd或者Consul,使用它们来取得共识,或者交替实现自己的共识算法。接下来我们将会看到Kubernetes如何使得在应用中进行leader选举明显更容易。

Kubernetes中leader选举的实现

leader选举的第一个要求是对于有意成为leader的一组候选者的规范,Kubernetes已经使用了Endpoints来表示一组包含服务的Pods副本,所以我们将重用这个相同的对象(旁白:你可能会认为我们将使用ReplicationControllers,但它们被绑定到一个特定的二进制软件包,即使在执行滚动更新的过程中也通常需要一个leader)。

执行leader选举将使用Kubernetes API中的两个属性:
  • ResourceVersions——每个API都有一个唯一的ResourceVersions,用户可以使用这些版本在Kubernetes对象上执行Compare-and-Swap操作。
  • Annotations——每个API都可以被用于客户端的任意键/值对注解。

鉴于这些原语,使用选主的代码相对简单,可以在这儿找到相关代码,运行如下:
$ kubectl run leader-elector --image=gcr.io/google_containers/leader-elector:0.4 --replicas=3 -- --election=example

这将会创建一个有三个副本的leader选举组:
$ kubectl get pods
NAME                   READY     STATUS    RESTARTS   AGE
leader-elector-inmr1   1/1       Running   0          13s
leader-elector-qkq00   1/1       Running   0          13s
leader-elector-sgwcq   1/1       Running   0          13s

为了查看哪一个Pod被选为了leader,用户可以访问Pods的日志,在下面的位置替换为你自己的Pod的名字:
${pod_name}, (e.g. leader-elector-inmr1 from the above)

$ kubectl logs -f ${name}
leader is (leader-pod-name)

或者,用户可以直接检查Endpoints对象:
# ‘example’ is the name of the candidate set from the above kubectl run … command
$ kubectl get endpoints example -o yams

现在需要验证leader选举是否生效,在另外一个终端中执行:
$ kubectl delete pods (leader-pod-name)

这个命令将会删除已有的leader,因为Replication Controller管理Pods组,一个新的Pod将会替换掉已经删除的,从而确保副本数目仍然为3。通过leader选举,这三个Pod中将会有一个被选为leader,并且leader角色还会失效转移到不同的Pod上。因为Kubernetes框架中Pod在终止前会有一个宽限期,通常是持续30~40秒。
leader选举容器提供了一个简单的Web服务器,可以运行在任何地址上(比如 http://localhost:4040 ),我们可以通过删除一个已有的leader选举组并创建一个新的来测试这个容器,此处可以另外传入一个形如-http=(host):(port) 规格的配置到镜像中,这样就会导致每一个组成员通过Webhook来获得有关leader的服务信息。
# delete the old leader elector group
$ kubectl delete rc leader-elector

# create the new group, note the --http=localhost:4040 flag
$ kubectl run leader-elector --image=gcr.io/google_containers/leader-elector:0.4 --replicas=3 -- --election=example --http=0.0.0.0:4040

# create a proxy to your Kubernetes api server
$ kubectl proxy

接着可以访问:
http://localhost:8001/api/v1/proxy/namespaces/default/pods/(leader-pod-name):4040/

然后就会看到:
{"name":"(name-of-leader-here)"} 

leader选举与sidecars

太好了,现在可以通过HTTP来进行leader选举和找出leader,但怎么能在您自己的应用程序中使用它们呢?这就需要引入Sidecars的概念。在Kubernetes中,Pods由一个或者多个容器组成,通常,这意味着添加sidecars容器到主应用程序中组成一个Pod(对于这个主题的更详细的处理,请看我以前的博客文章)。

leader选举容器可以作为一个Sidecars来从自己的应用中使用,Pod中的任何容器对谁是当前的选主感兴趣的都可以简单地通过 http://localhost:4040  来访问,然后返回一个简单的JSON对象,其中包含了当前选主的名字。既然Pod中的所有容器共享了相同的网络命名空间,就不再需要服务发现了!

举个例子,有一个简单的Node.js应用程序连接到leader选举Sidecar,然后打印出这个是否是当前的选主,领导人选举Sidecar将其标识符设置为默认的主机名。
var http = require('http');
// This will hold info about the current master
var master = {};

// The web handler for our nodejs application
var handleRequest = function(request, response) {
response.writeHead(200);
response.end("Master is " + master.name);
};

// A callback that is used for our outgoing client requests to the sidecar
var cb = function(response) {
var data = '';
response.on('data', function(piece) { data = data + piece; });
response.on('end', function() { master = JSON.parse(data); });
};

// Make an async request to the sidecar at http://localhost:4040
var updateMaster = function() {
var req = http.get({host: 'localhost', path: '/', port: 4040}, cb);
req.on('error', function(e) { console.log('problem with request: ' + e.message); });
req.end();
};

// Set up regular updates
updateMaster();
setInterval(updateMaster, 5000);

// set up the web server
var www = http.createServer(handleRequest);
www.listen(8080); 

当然,可以使用任何语言,选择支持HTTP和JSON来使用这个Sidecar。

总结

希望我已经向你展示了是多么容易为分布式应用程序使用Kubernetes来构建leader选举。在以后的部分我们将向您展示Kubernetes是如何使得构建分布式系统更容易。与此同时,还前往 Google容器引擎 或kubernetes.io来开始使用Kubernetes。

原文链接:Simple leader election with Kubernetes and Docker(翻译:胡震)

原文发布时间为:2016-01-19
本文作者:国会山上的猫TuxHu 
本文来自云栖社区合作伙伴DockerOne,了解相关信息可以关注DockerOne。
原文标题:使用Kubernetes和Docker进行简单的leader选举
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
1月前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
209 11
|
2月前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
232 19
|
2月前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
178 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
2月前
|
监控 NoSQL 时序数据库
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
303 78
|
3月前
|
Kubernetes 开发者 Docker
Docker与Kubernetes的协同工作
Docker与Kubernetes的协同工作
|
3月前
|
Kubernetes 监控 云计算
Docker与Kubernetes的协同工作
Docker与Kubernetes的协同工作
|
3月前
|
运维 Kubernetes Docker
深入理解容器化技术:Docker与Kubernetes的协同工作
深入理解容器化技术:Docker与Kubernetes的协同工作
103 14
|
1月前
|
缓存 容灾 网络协议
ACK One多集群网关:实现高效容灾方案
ACK One多集群网关可以帮助您快速构建同城跨AZ多活容灾系统、混合云同城跨AZ多活容灾系统,以及异地容灾系统。
|
2月前
|
Kubernetes Ubuntu 网络安全
ubuntu使用kubeadm搭建k8s集群
通过以上步骤,您可以在 Ubuntu 系统上使用 kubeadm 成功搭建一个 Kubernetes 集群。本文详细介绍了从环境准备、安装 Kubernetes 组件、初始化集群到管理和使用集群的完整过程,希望对您有所帮助。在实际应用中,您可以根据具体需求调整配置,进一步优化集群性能和安全性。
148 12
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。