从猫说起——深度学习的过去、现在和未来

本文涉及的产品
图像搜索,7款服务类型 1个月
简介:

过去:从猫到狗


翻阅1982年第1期的《世界科学》杂志,看到这样一则消息:“1981年10月17日,在瑞典的斯德哥摩尔城举行的诺贝尔奖授奖大会上,美国加州理工学院的罗杰•握尔考特•斯佩里(Roger Wolcott Sperry)博士和加拿大出生的美国人戴维•哈贝尔教授以及瑞典的托尔斯滕•韦塞尔分享了1981年诺贝尔生理学、医学奖。斯佩里因证明大脑两半球的高度专门化以及许多较高级的功能集中在右半球而获奖;哈贝尔和韦塞尔因研究视觉系统的信息处理方面有所发现而获奖。”



哈贝尔和韦塞尔的获奖要归功于“猫星人”,据说这个研究从1958年开始,在猫的后脑头骨上,开了一个小洞,向洞里插入电极,测量神经元的活跃程度,从而发现了一种神经元细胞——“方向选择性细胞”,即后脑皮层的不同视觉神经元与瞳孔所受刺激之间确实存在某种对应关系。这一重要发现,激活了一度沉寂的神经网络的研究。但是,人们不得不面对这样的现实:神经网络相关运算中耗费的运算量与神经元数目的平方成正比。基于硬件基础,那个时候人们普遍认为潜在的庞大的计算量是几乎无法实现的。

计算能力成了拦路虎,人们探寻真理的脚步一刻没有停歇。同样是1981年,IBM PC机中首次应用了8088芯片,开创了全新的微机时代。1985年INTEL推出了32位微处理器,而且制造工艺也有了很大的进步。许多人对286、386、486机器还存有记忆,人类的计算能力伴随着摩尔定律在大踏步前进。关于神经网络的算法也有了新的突破,1986年Hinton和David Rumelhard联合在国际权威杂志《自然》上提出在神经网络模型上运用反向传播算法,大大降低了原来预计的运算量。


20世纪80年代末到90年代初,共享存储器方式的大规模并行计算机又获得了新的发展。1993年,Cray公司研制成功了第一台具有标志性的大规模并行计算机。我国的银河系列并行计算机,在国际上也独树一帜。新世纪以来,大规模并行计算机蓬勃发展,逐渐成为国际上高性能计算机的主流。



伴随着计算处理能力的提升,深度学习有了较快的发展,从结构上分为生成型深度结构、判别型深度结构、混合型深度结构三类。1989年,加拿大多伦多大学教授Yann LeCun就和他的同事提出了卷积神经网络,是一种包含卷积层的深度神经网络模型,较早尝试深度学习对图像的处理。


2012年,Hinton构建深度神经网络,在图像识别问题上取得质的提升和突破。百度公司将相关最新技术成功应用到人脸识别和自然图像识别问题,并推出相应的产品。同样是从2012年,人们逐渐熟悉Google Brain团队。2015年至2017年初,一只“狗”引起世界的关注,人类围棋大师们陷入沉思。



现在:深度学习有多深


回答这个问题之前,让我们回顾一下机器学习。以使用决策树、推导逻辑规划、聚类、贝叶斯网络等传统算法对结构化的数据进行分析为基础,对真实世界中的事件作出决策和预测,通常被称为机器学习。比如无人驾驶汽车识别交通标志,这种机器视觉就是典型的机器学习。但是在特定的天气条件下,算法不灵,机器学习就有了局限。


深度学习在机器学习的基础上又前进了一步,同样是从数据中提取知识来解决和分析问题,深度学习使用的是人工神经网络算法,允许发现中间表示来扩展标准机器学习,这些中间表示能够解决更复杂的问题,并且以更高的精度、更少的观察和更不麻烦的手动调谐,潜在地解决其它问题。


最常见的深度学习类型是前馈深层神经网络(DNN),其使用大量的互连处理单元层从原始输入数据中“发现”适当的中间呈现。DNN提供了一个强大的框架,可应用于各种业务问题。例如可以分析视网膜扫描以“辨识”哪些模式指示健康或患病视网膜(并指示特定疾病)。“辨识”过程依赖于强力的高性能计算。


根据Gartner的相关资料,深度学习已经在图像识别、机器翻译、语音识别、欺诈检测、产品推荐等方面得到应用,如下表1、2:


表1:深度学习当前部分相关领域及案例


表2 深度学习当前的能力范围

来源:Gartner(2017年1月)


Gartner估计,从初创公司到技术巨头,全球有2,000多家供应商正在推出深度学习相关产品。但是,当前的深度学习有其一定的局限:


1、深度学习技术是启发式的。深度学习是否会解决一个给定的问题是不清楚的,根本没有数学理论可以表明一个“足够好”的深度学习解决方案是否存在。该技术是启发式的,工作即代表有效。


2、深度学习技术的不可预期性。深度学习涉及隐藏层,在许多情况下,即使是领先的科学家也不能解释这些层面发生了什么,这样的“黑盒子” 可能对解释甚至接受结果造成问题,有时甚至破坏合规性和道德性。


3、深度学习系统化运用不成熟。没有适合所有行业且通用的深度学习,企业想要创建自己的解决方案,目前必须混合和匹配可用的工具,并跟上新软件的快速出现。


4、部分错误的结果造成不良影响。深度学习目前不能以100%的精度解决问题。深度学习延续了较浅层机器学习的大多数风险和陷阱。


5、学习速度不尽如人意。一个两岁的孩子可以在被告知几次后识别大象,而深度学习系统可能需要成千上万的例子,并且“看”这些例子数十万或数百万次,才能成功。


6、当前的范围比较狭窄。比如,AlphaGo系统学会了在大师水平线上玩Go,也只会玩Go。应用于任何其他游戏(甚至更简单)时,系统将彻底失败。


未来:从GPU到?PU


深度学习是人工智能发展的主要驱动力。目前主要是在弱人工智能的发展中产生重要作用,主要是特定的行业应用,如上文提到的图像识别、自动驾驶和机器翻译等。但是要支撑和实现和人脑类似的强人工智能,OSTP(美国白宫科技政策办公室)认为至少在几十年内无法实现。除了上文提及的数据不足、相关算法需要改进外,对高性能计算的追求就是一个长期的持续的根本任务。



GPU这个概念在当前的“读图时代”,很多人并不陌生。GPU是相对于CPU的一个概念,由于在现代的计算机中(特别是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个专门的图形的核心处理器,这就是GPU。GPU对于深度学习技术非常重要。随着技术的演进,核心处理器也将更新迭代。例如,谷歌大脑团队正在设计TPU(深度学习芯片),这是针对深度神经网络运算的改进版的处理器。



量子计算至少在未来十年内不会影响深度学习。谷歌大脑团队的科学家Jeff Dean认为,人的大脑不是量子计算机,量子计算几乎不会对深度学习造成特别明显的影响,特别是在中短期内(比如未来十年)。但是,未来的未来,量子计算是不是能根本上改变深度学习,这谁也说不准。


原文发布时间为:2017-03-30

本文作者:孟海华

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
22天前
|
机器学习/深度学习 人工智能 监控
深度学习与图像识别的奇妙之旅
【10月更文挑战第42天】在这篇文章中,我们将一同探索深度学习如何革新了我们对图像的理解。通过深入浅出的方式,我们将了解深度学习模型如何学会“看”世界,并实现令人惊叹的图像识别能力。文章将带领读者从基础概念出发,逐步深入到模型训练和优化策略,最后以实际的代码示例来揭示这一技术的强大之处。无论你是深度学习领域的新手,还是希望加深理解的资深爱好者,这篇文章都将为你提供宝贵的知识与启示。
29 1
|
2月前
|
人工智能 自然语言处理 搜索推荐
ECCV 2024:一眼临摹:瞥一眼就能模仿笔迹的AI
 【10月更文挑战第10天】在人工智能领域,手写文本生成技术迎来新突破。最新研究提出“一眼临摹”AI技术,仅需一个手写样本文即可模仿任意书法风格。该技术核心为One-DM模型,结合扩散模型与风格增强模块,实现高效、多样且高质量的手写文本生成,广泛应用于数字签名、个性化信件及艺术创作等领域。
57 2
|
4月前
|
机器学习/深度学习 自动驾驶 机器人
深度学习之人类行为模仿
基于深度学习的人类行为模仿是指利用深度学习技术构建模型,使计算机系统能够学习、理解、并模仿人类的行为。通过模拟人类的动作、决策过程、情感反应等行为,相关技术在机器人、虚拟助手、人机交互等领域具有广泛的应用前景。
83 5
|
4月前
|
机器学习/深度学习 数据采集 TensorFlow
从零到精通:TensorFlow与卷积神经网络(CNN)助你成为图像识别高手的终极指南——深入浅出教你搭建首个猫狗分类器,附带实战代码与训练技巧揭秘
【8月更文挑战第31天】本文通过杂文形式介绍了如何利用 TensorFlow 和卷积神经网络(CNN)构建图像识别系统,详细演示了从数据准备、模型构建到训练与评估的全过程。通过具体示例代码,展示了使用 Keras API 训练猫狗分类器的步骤,旨在帮助读者掌握图像识别的核心技术。此外,还探讨了图像识别在物体检测、语义分割等领域的广泛应用前景。
34 0
|
4月前
|
机器学习/深度学习 存储 算法框架/工具
【深度学习】猫狗识别TensorFlow2实验报告
本文介绍了使用TensorFlow 2进行猫狗识别的实验报告,包括实验目的、采用卷积神经网络(CNN)进行训练的过程,以及如何使用交叉熵作为损失函数来识别猫狗图像数据集。
174 1
|
7月前
|
机器学习/深度学习 人工智能 算法
机器学习和深度学习有啥区别?一看就懂
深度学习与机器学习是相关但不同的概念,深度学习是机器学习的一个分支。机器学习侧重于让计算机在无明确编程情况下学习,包括决策树、SVM等算法;而深度学习主要依赖深层神经网络,如CNN、RNN。机器学习对数据需求较小,广泛应用于各领域;深度学习则需要大量数据,擅长图像和语音处理。机器学习模型可简可繁,计算资源需求较低;深度学习模型复杂,常需GPU支持
299 0
|
7月前
|
机器学习/深度学习 自然语言处理 算法
深度学习算法:从模仿到创造
深度学习是一种受到生物学启发的机器学习方法,其目标是通过构建多层神经网络来模拟人脑的工作原理。它在过去几十年来取得了巨大的进展,并在图像识别、语音识别、自然语言处理等领域取得了突破性的成果。 深度学习的核心思想是模仿人脑的神经网络。人脑中的神经元通过连接起来形成庞大的神经网络,用来处理感知、思维和决策等任务。深度学习的神经网络也是由许多层次的神经元组成,每一层都能够从上一层中学习到更加抽象的特征表示。通过训练数据,深度学习模型能够自动学习到最优的特征表示,并用于解决各种复杂的任务。 深度学习有许多典型的算法,其中包括卷积神经网络
|
机器学习/深度学习 算法 大数据
【深度学习之美】全面连接困何处,卷积网络见解深(入门系列之九)
低级动物的眼睛多长在两侧,这样视野广阔,便于避险。而人类的双眼只长在一面,视野有死角,安全难保障,可为什么只有人类“高级”起来,进化成为这个地球的主宰呢?进一步地,是广而肤浅好呢,还是深而专注佳呢?再进一步,这和卷积神经网络又有啥关系?进来瞅瞅呗,历史会告诉你答案。
21142 0
【深度学习之美】全面连接困何处,卷积网络见解深(入门系列之九)
|
机器学习/深度学习 TensorFlow 算法框架/工具
计算机图形学遇上深度学习
今日,TensorFlow 宣布推出 TensorFlow Graphics,该工具结合计算机图形系统和计算机视觉系统,可利用大量无标注数据,解决复杂 3D 视觉任务的数据标注难题,助力自监督训练。
2726 0
|
机器学习/深度学习 自然语言处理 算法
深度学习在锦囊细选上的应用
本文就将lstm用户行为序列预测term的偏好 和 ctr预估相结合做了探索和应用,并在线下和线上取得了正向的效果。
6652 0