【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

简介: (转载请注明出处:http://blog.csdn.net/buptgshengod)1.背景          决策书算法是一种逼近离散数值的分类算法,思路比较简单,而且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.

(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.背景

          决策书算法是一种逼近离散数值的分类算法,思路比较简单,而且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一。C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。

          算法的主要思想就是将数据集按照特征对目标指数的影响由高到低排列。行成一个二叉树序列,进行分类,如下图所示。

                                              

         现在的问题关键就是,当我们有很多特征值时,哪些特征值作为父类写在二叉树的上面的节点,哪下写在下面。我们可以直观的看出上面的特征值节点应该是对目标指数影响较大的一些特征值。那么如何来比较哪些特征值对目标指数影响较大呢。这里引出一个概念,就是信息熵。

        信息理论的鼻祖之一Claude E. Shannon把信息(熵)定义为离散随机事件的出现概率。说白了就是信息熵的值越大就表明这个信息集越混乱。

        信息熵的计算公式,H(X) = \sum_{i=1}^n {p(x_i)\,I(x_i)} = -\sum_{i=1}^n {p(x_i) \log_b p(x_i)}(建议去wiki学习一下)

        这里我们通过计算目标指数的熵和特征值得熵的差,也就是熵的增益来确定哪些特征值对于目标指数的影响最大。


2.数据集


                    

3.代码

 

     (1)第一部分-计算熵

                       函数主要是找出有几种目标指数,根据他们出现的频率计算其信息熵。  
def calcShannonEnt(dataSet):
    numEntries=len(dataSet)
    
    labelCounts={}

    for featVec in dataSet:
        currentLabel=featVec[-1]
       
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel]=0        
        labelCounts[currentLabel]+=1
    shannonEnt=0.0
    
    for key in labelCounts:
         
         prob =float(labelCounts[key])/numEntries        
         shannonEnt-=prob*math.log(prob,2)

    return shannonEnt      
   

     (2)第二部分-分割数据

            因为要每个特征值都计算相应的信息熵,所以要对数据集分割,将所计算的特征值单独拿出来。
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting            
            reducedFeatVec.extend(featVec[axis+1:])      
            retDataSet.append(reducedFeatVec)          
    return retDataSet

   (3)第三部分-找出信息熵增益最大的特征值

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
       
        uniqueVals = set(featList)       #get a set of unique values
        
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer


4.代码下载

      
    结果是输出0,也就是是否有喉结对性别影响最大。
目录
相关文章
|
8月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
313 7
|
6月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
961 12
Scikit-learn:Python机器学习的瑞士军刀
|
9月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
Python与机器学习:使用Scikit-learn进行数据建模
|
8月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
8月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
12月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
200 0
|
12月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
414 0
|
机器学习/深度学习 算法 Python
【Python数据科学手册】专题:决策树与随机森林
本文将介绍一种强大的算法——无参数算法随机森林。随机森林是一种集成方法,通过集成多个比较简单的评估器形成累积效果。这种集成方法的学习效果经常出人意料,往往能超过各个组成部分的总和;也就是说,若干评估器的多数投票(majority vote)的最终效果往往优于单个评估器投票的效果!
987 0
|
机器学习/深度学习 Python
Python 数据科学手册 5.8 决策树和随机森林
5.8 决策树和随机森林 原文:In-Depth: Decision Trees and Random Forests 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。
1401 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
257 102

推荐镜像

更多