斯坦福机器学习公开课学习笔记(3)—拟合问题以及局部权重回归、逻辑回归

简介: (转载请注明出处:http://blog.csdn.net/buptgshengod)1.拟合问题       这节课首先讲到了一个我们经常遇到的问题,欠拟合(underfitting)以及过拟合(overfitting)。其中过拟合是最常见的,这个问题,来源于我们一个特征值的权重过于突出,就会造成过拟合。比如说我们有一个特征值X。就是容易造成欠拟合,因为这个结论是一条直线。但是,当我们把

(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.拟合问题

       这节课首先讲到了一个我们经常遇到的问题,欠拟合(underfitting)以及过拟合(overfitting)。其中过拟合是最常见的,这个问题,来源于我们一个特征值的权重过于突出,就会造成过拟合。比如说我们有一个特征值X。就是容易造成欠拟合,因为这个结论是一条直线。但是,当我们把x平方,,这个式子就会得到比较好的拟合。但是当我们把x三次方,四次方。。。都加上,就会出现过拟合。这三种情况分别对应下图的左1,右1,下。


2.局部权重回归(linear regression)

      上一节讲了回归问题。是通过全部数据集拟合出每个特征值对应的参数。在linear regression中,我们预测一个x它所对应的y,我们只要找到这个x周边的数值,拟合一条直线出来,就可以了。
       这里涉及到如何找到x周围的数值,这就涉及到一个截取近似数值的问题。Andrew使用的是一个类似于高斯公式变形的方法

3.最小二乘法

       在讲logical regression之前,Andrew还特意推导了一下为什么我们用最小二乘法来做判断。用到了中心极限定律。设噪声符合高斯分布,然后在log下推导。推出了用最小二乘法是判断预测结果的形式。

4.逻辑回归(logical regression)

      首先讲了为什么要用sigmoid函数,把离散的数据变为线性的。之后就是通过上一节讲的梯度下降法的变形拟合出逻辑回归的每个参数。
sigmoid函数:


目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 监控
深度学习中模型训练的过拟合与欠拟合问题
在机器学习和深度学习中,过拟合和欠拟合是影响模型泛化能力的两大常见问题。过拟合指模型在训练数据上表现优异但在新数据上表现差,通常由模型复杂度过高、数据不足或质量差引起;欠拟合则指模型未能充分学习数据中的模式,导致训练和测试数据上的表现都不佳。解决这些问题需要通过调整模型结构、优化算法及数据处理方法来找到平衡点,如使用正则化、Dropout、早停法、数据增强等技术防止过拟合,增加模型复杂度和特征选择以避免欠拟合,从而提升模型的泛化性能。
|
7月前
|
机器学习/深度学习 算法
【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)
本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。
646 1
|
4月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的过拟合现象及其解决方案
在机器学习领域,过拟合是一个常见且棘手的问题,它发生在模型过于复杂以至于捕捉到训练数据中的噪声而非信号时。本文将深入探讨过拟合的原因、影响以及如何通过技术手段有效缓解这一问题,旨在为读者提供一个全面而实用的指南。
|
5月前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
966 3
|
4月前
|
机器学习/深度学习
深入理解机器学习中的过拟合与正则化
深入理解机器学习中的过拟合与正则化
|
5月前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
5月前
|
机器学习/深度学习 算法 数据挖掘
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
|
5月前
|
机器学习/深度学习 存储 自然语言处理
【机器学习】基于逻辑回归的分类预测
【机器学习】基于逻辑回归的分类预测
|
5月前
|
机器学习/深度学习 算法
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
|
5月前
|
机器学习/深度学习 算法 API
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)

热门文章

最新文章