【机器学习算法-python实现】采样算法的简单实现

简介: 1.背景    采样算法是机器学习中比较常用,也比较容易实现的(出去分层采样)。常用的采样算法有以下几种(来自百度知道):   一、单纯随机抽样(simple random sampling)将调查总体全部观察单位编号,再用抽签法或随机数字表随机抽取部分观察单位组成样本。优点:操作简单,均数、率及相应的标准误计算简单。 缺点:总体较大时,难以一一编号。二、系统抽样(sy

1.背景

    采样算法是机器学习中比较常用,也比较容易实现的(出去分层采样)。常用的采样算法有以下几种(来自百度知道):
   
一、单纯随机抽样(simple random sampling)

将调查总体全部观察单位编号,再用抽签法或随机数字表随机抽取部分观察单位组成样本。

优点:操作简单,均数、率及相应的标准误计算简单。 

缺点:总体较大时,难以一一编号。

二、系统抽样(systematic sampling搜索)

又称机械抽样、等距抽样,即先将总体的观察单位按某一顺序号分成n个部分,再从第一部分随机抽取第k号观察单位,依次用相等间距,从每一部分各抽取一个观察单位组成样本。

优点:易于理解、简便易行。

缺点:总体有周期或增减趋势时,易产生偏性。

三、整群抽样(cluster sampling)

总体分群,再随机抽取几个群组成样本,群内全部调查。

优点:便于组织、节省经费。

缺点:抽样误差大于单纯随机抽样。

四、分层抽样(stratified sampling)

先按对观察指标影响较大的某种特征,将总体分为若干个类别,再从每一层内随机抽取一定数量的观察单位,合起来组成样本。有按比例分配和最优分配两种方案。

优点:样本代表性好,抽样误差减少。

以上四种基本抽样方法都属单阶段抽样,实际应用中常根据实际情况将整个抽样过程分为若干阶段来进行,称为多阶段抽样。

各种抽样方法抽样误差一般是:整群抽样≥单纯随机抽样≥系统抽样≥分层抽样

2.代码实现

    
    无放回抽样:随机抽样(RandomSampling) 和系统抽样(SystematicSampling)。
    有放回抽样:随机抽样(RepetitionRandomSampling)。

'''
Sampling archive

@author: Garvin Li
'''
import random
def loadDataSet(fileName):      #general function to parse tab -delimited floats
    dataMat = []                #assume last column is target value
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
#         fltLine = map(float,curLine) #map all elements to float()
        dataMat.append(curLine)
    return dataMat

def RandomSampling(dataMat,number):
    try:
         slice = random.sample(dataMat, number)    
         return slice
    except:
         print 'sample larger than population'

def RepetitionRandomSampling(dataMat,number):    
    sample=[]
    for i in range(number):
         sample.append(dataMat[random.randint(0,len(dataMat)-1)])
    return sample
def SystematicSampling(dataMat,number):    
    
       length=len(dataMat)
       k=length/number
       sample=[]     
       i=0
       if k>0 :       
         while len(sample)!=number:
            sample.append(dataMat[0+i*k])
            i+=1            
         return sample
       else :
         return RandomSampling(dataMat,number)   
       
            
if __name__=='__main__':
   dataMat=loadDataSet('/Users/hakuri/Desktop/data1.txt')
#    print RandomSampling(dataMat,7)    
#    RepetitionSampling(dataMat,4)
   print SystematicSampling(dataMat,9)

测试结果就不单独上图了,测试集和代码都提供下载,有兴趣可以去看一下。
过一段把高级聚类算法写好,实现一下分层抽样。

下载地址:点击我


/********************************

* 本文来自博客  “李博Garvin“

* 转载请标明出处:http://blog.csdn.net/buptgshengod

******************************************/



目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
93 55
|
19天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
123 67
|
19天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
114 61
|
20天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
103 63
|
13天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
87 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
19天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
19天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
26天前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
39 0
|
26天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
36 0
|
13天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。