【机器学习算法-python实现】最大似然估计(Maximum Likelihood)

简介: 1.背景           最大似然估计是概率论中常常涉及到的一种统计方法。大体的思想是,在知道概率密度f的前提下,我们进行一次采样,就可以根据f来计算这个采样实现的可能性。当然最大似然可以有很多变化,这里实现一种简单的,实际项目需要的时候可以再更改。       博主是参照wiki来学习的,地址请点击我           这里实现的是特别简单的例子如下(摘自wiki的最大似然)

1.背景

            最大似然估计是概率论中常常涉及到的一种统计方法。大体的思想是,在知道概率密度f的前提下,我们进行一次采样,就可以根据f来计算这个采样实现的可能性。当然最大似然可以有很多变化,这里实现一种简单的,实际项目需要的时候可以再更改。
       博主是参照wiki来学习的,地址请点击我
            这里实现的是特别简单的例子如下(摘自wiki的最大似然)

离散分布,离散有限参数空间[编辑]

考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样x_1=\mbox{H}, x_2=\mbox{T}, \ldots, x_{80}=\mbox{T}并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为p,抛出一个反面的概率记为1-p(因此,这里的p即相当于上边的\theta)。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为p=1/3p=1/2p=2/3.这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:

\begin{matrix}\mathbb{P}(\mbox{H=49, T=31 }\mid p=1/3) & = & \binom{80}{49}(1/3)^{49}(1-1/3)^{31} \approx 0.000 \\&&\\\mathbb{P}(\mbox{H=49, T=31 }\mid p=1/2) & = & \binom{80}{49}(1/2)^{49}(1-1/2)^{31} \approx 0.012 \\&&\\\mathbb{P}(\mbox{H=49, T=31 }\mid p=2/3) & = & \binom{80}{49}(2/3)^{49}(1-2/3)^{31} \approx 0.054 \\\end{matrix}

我们可以看到当\widehat{p}=2/3时,似然函数取得最大值。这就是p的最大似然估计。


2.实现部分


          有一点要提的是,因为用到了阶乘,关于阶乘问题本来想到的方法是用递归来实现。但是google了一下发现其实python的reduce方法用起来更加方便,一句话就解决的。
 
def Factorial(x):
    return reduce(lambda x,y:x*y,range(1,x+1))  

      
完整工程:
'''
Created on 2014-8-22
@author: Garvin
Maximum Likelihood theory practic

This code is base on the http://zh.wikipedia.org/wiki/%E6%9C%80%E5%A4%A7%E4%BC%BC%E7%84%B6%E4%BC%B0%E8%AE%A1
'''
w=2.0/3
h=49
t=31

def DefineParam():
    H=h
    T=t
    return H,T

def MaximumLikelihood(p=w):
    H,T=DefineParam()
    f1=Factorial(H+T)/(Factorial(H)*Factorial(T))
    
    f2=(p**H)*((1.0-p)**T)
    
    
    return f1*f2
    
    
def Factorial(x):
    return reduce(lambda x,y:x*y,range(1,x+1))    
    
    


实现效果,对应上面的例子,当H=49,T=31,是P=2/3概率的可能性



代码地址:请点击我


/********************************

* 本文来自博客  “李博Garvin“

* 转载请标明出处:http://blog.csdn.net/buptgshengod

******************************************/



目录
打赏
0
0
0
0
82420
分享
相关文章
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
25 3
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
探秘文件共享服务之哈希表助力 Python 算法实现
在数字化时代,文件共享服务不可或缺。哈希表(散列表)通过键值对存储数据,利用哈希函数将键映射到特定位置,极大提升文件上传、下载和搜索效率。例如,在大型文件共享平台中,文件名等信息作为键,物理地址作为值存入哈希表,用户检索时快速定位文件,减少遍历时间。此外,哈希表还用于文件一致性校验,确保传输文件未被篡改。以Python代码示例展示基于哈希表的文件索引实现,模拟文件共享服务的文件索引构建与检索功能。哈希表及其分布式变体如一致性哈希算法,保障文件均匀分布和负载均衡,持续优化文件共享服务性能。
|
20天前
|
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
40 10
|
21天前
|
基于 Python 广度优先搜索算法的监控局域网电脑研究
随着局域网规模扩大,企业对高效监控计算机的需求增加。广度优先搜索(BFS)算法凭借其层次化遍历特性,在Python中可用于实现局域网内的计算机设备信息收集、网络连接状态监测及安全漏洞扫描,确保网络安全与稳定运行。通过合理选择数据结构与算法,BFS显著提升了监控效能,助力企业实现智能化的网络管理。
28 7
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
62 12
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
53 9
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
49 10

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等