【机器学习PAI实践一】搭建心脏病预测案例

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2一、背景心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2

一、背景

心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用。本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例。

二、数据集介绍

数据源: UCI开源数据集heart_disease
针对美国某区域的心脏病检查患者的体测数据,共303条数据。具体字段如下表:

字段名 含义 类型 描述
age 年龄 string 对象的年龄,数字表示
sex 性别 string 对象的性别,female和male
cp 胸部疼痛类型 string 痛感由重到无typical、atypical、non-anginal、asymptomatic
trestbps 血压 string 血压数值
chol 胆固醇 string 胆固醇数值
fbs 空腹血糖 string 血糖含量大于120mg/dl为true,否则为false
restecg 心电图结果 string 是否有T波,由轻到重为norm、hyp
thalach 最大心跳数 string 最大心跳数
exang 运动时是否心绞痛 string 是否有心绞痛,true为是,false为否
oldpeak 运动相对于休息的ST depression string st段压数值
slop 心电图ST segment的倾斜度 string ST segment的slope,程度分为down、flat、up
ca 透视检查看到的血管数 string 透视检查看到的血管数
thal 缺陷种类 string 并发种类,由轻到重norm、fix、rev
status 是否患病 string 是否患病,buff是健康、sick是患病

三、数据探索流程

数据挖掘流程如下:

整体实验流程:

1.数据预处理

数据预处理也叫作数据清洗,主要在数据进入算法流程前对数据进行去噪、填充缺失值、类型变换等操作。本次实验的输入数据包括14个特征和1个目标队列。需要解决的场景是根据用户的体检指标预测是否会患有心脏病,每个样本只有患病或不患病两种,是分类问题。因为本次分类实验选用的是线性模型逻辑回归,要求输入的特征都是double型的数据。
输入数据展示:

我们看到有很多数据是文字描述的,在数据预处理的过程中我们需要根据每个字段的含义将字符型转为数值。
1)二值类的数据
二值类的比较容易转换,如sex字段有两种表现形式female和male,我们可以将female表示成0,把male表示成1。
2)多值类的数据
比如cp字段,表示胸部的疼痛感,我们可以通过疼痛的由轻到重映射成0~3的数值。

数据的预处理通过sql脚本来实现,具体请参考SQL脚本-1组件,


select age,
(case sex when 'male' then 1 else 0 end) as sex,
(case cp when 'angina' then 0  when 'notang' then 1 else 2 end) as cp,
trestbps,
chol,
(case fbs when 'true' then 1 else 0 end) as fbs,
(case restecg when 'norm' then 0  when 'abn' then 1 else 2 end) as restecg,
thalach,
(case exang when 'true' then 1 else 0 end) as exang,
oldpeak,
(case slop when 'up' then 0  when 'flat' then 1 else 2 end) as slop,
ca,
(case thal when 'norm' then 0  when 'fix' then 1 else 2 end) as thal,
(case status  when 'sick' then 1 else 0 end) as ifHealth
from  ${t1};  

2.特征工程

特征工程主要是包括特征的衍生、尺度变化等。本例中有两个组件负责特征工程的部分。

1)过滤式特征选择
主要是通过这个组件判断每个特征对于结果的影响,通过信息熵和基尼系数来表示,可以通过查看评估报告来显示最终的结果。

2)归一化
因为本次实验选择的是通过逻辑回归二分类来进行模型训练,需要每个特征去除量纲的影响。归一化的作用是将每个特征的数值范围变为0到1之间。归一化的公式为result=(val-min)/(max-min)。
归一化结果:

3.模型训练和预测

本次实验是监督学习,因为我们已经知道每个样本是否患有心脏病,所谓监督学习就是已知结果来训练模型。解决的问题是预测一组用户是否患有心脏病。

1)拆分
首先通过拆分组件将数据分为两部分,本次实验按照训练集和预测集7:3的比例拆分。训练集数据流入逻辑回归二分类组件用来训练模型,预测集数据进入预测组件。

2)逻辑回归二分类
逻辑回归是一个线性模型,在这里通过计算结果的阈值实现分类。具体的算法详情推荐大家在网上或者书籍中自行了解。逻辑回归训练好的模型可以在模型页签中查看。

3)预测
预测组件的两个输入分别是模型和预测集。预测结果展示的是预测数据、真实数据、每组数据不同结果的概率。

4.评估

通过混淆矩阵组件可以评估模型的准确率等参数,

通过此组件可以方便的通过预测的准确性来评估模型。

四.总结

通过以上数据探索的流程我们可以得到以下的结论。

1)特征权重
我们可以通过过滤式特征选择得到每个特征对于结果的权重。

-可以看出thalach(心跳数)对于是否发生心脏病影响最大。
-性别对于心脏病没有影响
2)模型效果
通过上文提供的14个特征,可以达到百分之八十多的心脏病预测准确率。模型可以用来做预测,辅助医生预防和治疗心脏病。

五、其它

免费体验:阿里云数加机器学习平台

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
21天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
4天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
28 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
6天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
14天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
34 12
|
14天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
46 4
|
28天前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习:从理论到实践
在这篇文章中,我们将深入探讨机器学习的世界。我们将首先了解机器学习的基本概念和原理,然后通过一个简单的代码示例,展示如何实现一个基本的线性回归模型。无论你是初学者还是有经验的开发者,这篇文章都将帮助你更好地理解和应用机器学习。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
46 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第35天】在这篇文章中,我们将深入探讨机器学习的世界。我们将从基础理论开始,然后逐步过渡到实际应用,最后通过代码示例来展示如何实现一个简单的机器学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和见解。
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
98 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用