【机器学习PAI实践四】如何实现金融风控

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: (本文数据为虚构,仅供实验)一、背景本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。 本文的业务场景如下: 下图是已知的一份人物通联关系

(本文数据为虚构,仅供实验)

一、背景

本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。
本文的业务场景如下:
下图是已知的一份人物通联关系图,每两个人之间的连线表示两人有一定关系,可以是同事关系或者亲人关系等。已知“Enoch”是信用用户,”Evan”是欺诈用户,计算出其它人的信用指数。通过图算法,可以算出图中每个人是欺诈用户的概率,这个数据可以方便相关机构做风控。

二、数据集介绍

数据源:本文数据为自己生成,用于实验。
具体字段如下:

字段名 含义 类型 描述
start_point 边的起始节点 string
end_point 边结束节点 string
count 关系紧密度 double 数值越大,两人的关系越紧密

数据截图:

三、数据探索流程

首先,实验流程图:

1.最大联通子图

最大联通子图的功能很好理解,前面已经介绍了,图算法的输入数据是关系图谱结构的。最大联通子图可以找到有通联关系的最大集合,在团伙发现的场景中可以排除掉一些与风控场景无关的人。本次实验通过“最大联通子图”组件将数据中的群体分为两部分,并赋予group_id。通过“SQL脚本”组件和“JOIN”组件去除下图中的无关联人员。

2.单源最短路径

通过“单源最短路径”组件探查出每个人的一度人脉、二度人脉关系等。distance讲的是“Enoch”通过几个人可以联络到目标人。
如下图:

3.标签传播分类

“标签传播分类”算法为半监督的分类算法,原理是用已标记节点的标签信息去预测未标记节点的标签信息。在算法执行过程中,每个节点的标签按相似度传播给相邻节点。
调用“标签传播分类”组件除了要有所有人员的通联图数据以外,还要有人员打标数据。这里通过“已知数据-读odps”组件导入打标数据(weight表示目标是欺诈用户的概率):

通过SQL对结果进行筛选,最终结果展现的是每个人涉嫌欺诈的概率,数值越大表示是欺诈用户的概率越大。

四、其它

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
9月前
|
机器学习/深度学习 数据采集 人工智能
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
MATLAB在机器学习模型训练与性能优化中的应用探讨
|
机器学习/深度学习 数据采集 人工智能
探索机器学习在金融风控中的应用
【7月更文挑战第31天】随着科技的飞速发展,机器学习技术已广泛应用于各行各业,尤其在金融风控领域展现出巨大潜力。本文将深入探讨机器学习如何革新传统的金融风险评估模型,通过案例分析展示其在实际应用中的效果,并讨论面临的挑战与未来发展方向。
|
机器学习/深度学习 数据采集 自然语言处理
机器学习【金融风险与风口评估及其应用】
机器学习【金融风险与风口评估及其应用】
302 6
|
机器学习/深度学习 算法 搜索推荐
机器学习及其应用领域【金融领域】
机器学习及其应用领域【金融领域】
223 5
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
472 8
|
机器学习/深度学习 数据采集 人工智能
探索机器学习在金融欺诈检测中的应用
【8月更文挑战第30天】 随着金融科技的迅猛发展,机器学习技术在保障交易安全和打击金融欺诈中扮演着越来越重要的角色。本文将深入探讨机器学习模型在识别和预防金融欺诈方面的应用,并分析其优势与面临的挑战。通过对比传统方法,我们突出了机器学习在处理大数据、提高检测速度和精度方面的独特价值。同时,文中还将介绍几种常用的算法和模型,以及它们在实际场景中的运用情况。最后,本文提出了未来发展趋势和需要解决的关键问题。
|
机器学习/深度学习 自然语言处理 算法
探索机器学习在金融领域的革命性应用
本文深入探讨了机器学习技术在金融行业的广泛应用,并分析了其对金融市场的深远影响。从算法交易到信用风险评估,再到智能客户服务,机器学习技术正在重塑金融服务的方方面面。文章通过具体案例展示了机器学习如何提高效率、降低成本并增强客户体验,同时也讨论了实施这些技术时所面临的挑战和未来的发展趋势。
|
机器学习/深度学习 数据采集 算法
探索机器学习在金融风控中的应用与挑战
【8月更文挑战第10天】随着金融科技的迅速发展,机器学习技术被广泛应用于金融服务领域,尤其是风险控制。本文深入探讨了机器学习在金融风控中的角色,分析了其在信用评分、欺诈检测等方面的应用,并指出了实施过程中面临的数据质量、模型解释性、法规遵从等挑战。文章旨在为金融机构提供机器学习应用的参考框架和应对策略,以增强风险管理能力。
186 7
|
机器学习/深度学习 API 网络架构
"解锁机器学习超级能力!Databricks携手Mlflow,让模型训练与部署上演智能风暴,一触即发,点燃你的数据科学梦想!"
【8月更文挑战第9天】机器学习模型的训练与部署流程复杂,涵盖数据准备、模型训练、性能评估及部署等步骤。本文详述如何借助Databricks与Mlflow的强大组合来管理这一流程。首先需在Databricks环境内安装Mlflow库。接着,利用Mlflow跟踪功能记录训练过程中的参数与性能指标。最后,通过Mlflow提供的模型服务功能,采用REST API或Docker容器等方式部署模型。这一流程充分利用了Databricks的数据处理能力和Mlflow的生命周期管理优势。
539 7
|
机器学习/深度学习 运维 算法
【阿里天池-医学影像报告异常检测】3 机器学习模型训练及集成学习Baseline开源
本文介绍了一个基于XGBoost、LightGBM和逻辑回归的集成学习模型,用于医学影像报告异常检测任务,并公开了达到0.83+准确率的基线代码。
242 9