机器学习如何帮助企业高效地管理数据?

简介:

机器学习是当今技术领域的热门话题。从自驾车,到反恐斗争中捕捉邪恶的内容,应用程序在您拍摄照片之前自动美图等,这些应用程序无处不在。每一项创新都创造了一个新的商业机会,同时简化和自动化通常远远超出了我们人类能够立即处理或花费一生处理的数据。

虽然机器学习是一个新兴的趋势,但其实也是一个突破。早在1959年,计算机科学和游戏先驱亚瑟·塞缪尔就将机器学习定义为“计算机没有被明确编程的情况下的学习能力”。

由于计算机帮助我们在使用应用程序和服务的前端处理中收获了很多便捷,机器学习正在迅速转移到数据中心的后台也就不奇怪了。随着网络攻击的增多,研究人员正在研究机器学习如何提高数据中心的安全性。而机器学习控制已经帮助管理电力和冷却效率,以帮助数据中心更加节能。

机器智能超越开关

除了超越数字警犬和智能开关,机器智能今天所需要提高的效率还远远不止这些。尽管闪存和其他非易失性存储器(NVMe)技术快速创新,但整个存储系统的使用效率仍低下。这是因为没有办法知道什么数据是“热”的,需要高性能,或者什么数据是不活跃的,就能转移到较便宜的存储层。

元数据,可用于确定上次访问文件的时间,更改了什么内容,还有更多的属性有助于显示给定数据集的当前业务价值。元数据引擎软件可以虚拟化数据,并检查数据如何与生态系统中可用的存储资源保持一致。凭借这种智能,它可以将任何粒度(LUNs,卷,目录,子目录或单个文件)的数据移动到正确的层,以符合IT的目标。它运行的时间越长,元数据引擎软件收集和分析模式就越多,并开始就如何优化资源提出建议,以最大限度地提高需求数据的性能,从而节省数据。而且,你仍然可以进行手动控制并定义需要性能的数据,因为CEO可能希望在几秒钟之内就可以访问18个月前的电子邮件。

或者,IT可以在其数据中心的每个存储中心中手动管理数据,但随着企业开始采用更有效的替代方案,坚持现状可能会比首先在本地自动化数据管理具有更大的业务风险。

机器学习是基于过去的经验,以致未来做得更好。也许这就是为什么当我们听到机器学习的暴增时,我们中有很多人有点担心。机器在过去的情感投资远远少于我们,但幸运的是,正是因为有了人的智慧,我们可以把智能放在企业最需要的地方,从而更好地管理数据。


本文转自d1net(转载)

相关文章
|
11天前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
133 88
|
16天前
|
机器学习/深度学习 数据采集 算法
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
137 36
|
23天前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
50 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
17天前
|
人工智能 Kubernetes Cloud Native
跨越鸿沟:PAI-DSW 支持动态数据挂载新体验
本文讲述了如何在 PAI-DSW 中集成和利用 Fluid 框架,以及通过动态挂载技术实现 OSS 等存储介质上数据集的快速接入和管理。通过案例演示,进一步展示了动态挂载功能的实际应用效果和优势。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
模型训练数据-MinerU一款Pdf转Markdown软件
MinerU是由上海人工智能实验室OpenDataLab团队开发的开源智能数据提取工具,专长于复杂PDF文档的高效解析与提取。它能够将含有图片、公式、表格等多模态内容的PDF文档转化为Markdown格式,同时支持从网页和电子书中提取内容,显著提升了AI语料准备的效率。MinerU具备高精度的PDF模型解析工具链,能自动识别乱码,保留文档结构,并将公式转换为LaTeX格式,广泛适用于学术、财务、法律等领域。
238 4
|
2月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
45 2
|
3月前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
103 3
|
3月前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
48 2
|
4月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
4月前
|
机器学习/深度学习 数据采集 算法
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
433 8