EMC为预测性大数据分析交付数据湖方案

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:
文章讲的是 EMC为预测性大数据分析交付数据湖方案EMC公司和Pivotal今天发布数据湖Hadoop2.0包,面向客户的预测分析场景构建横向扩展数据湖,提供一种包含计算、分析和存储在内的交钥匙方案。

  作为一种面向由传统和下一代工作负载产生的关键数据,可无限可扩展的知识库,数据湖正蓄势待发。EMC的横向扩展数据湖以企业级特性为设计之本,帮助组织从大数据中获得直接的商业价值。

  今年早些时候,EMC和Pivotal发布了第一个数据湖Hadoop包-基于企业级横向扩展存储与企业级Hadoop预测分析的融合方案。数据湖Hadoop包2.0现已发布,包括EMC的数据计算设备(DCA),这是一个高性能的大数据计算设备,可大幅简化部署以及扩展基于Hadoop的高级分析计算。DCA联合Isilon横向扩展NAS,以及Pivotal HD和Pivotal HAWQ,共同组成该打包方案,进一步夯实了EMC和Pivotal交付面向企业级预测分析的Hadoop的市场承诺。作为打包方案的一个战略组成部分,DCA专为大数据工作负载优化,为用户提供简化的体验,最大化分析性能并加速价值转化。

  大数据Hadoop包2.0旨在帮助组织加速基于Hadoop大数据创新的价值实现的同时,相对于其他由不同的独立模块装配而成的方案而言,保持更低的获取与管理的成本。该解决方案由一套预测试的、高性能的大数据分析系统组成,其中包括世界级的EMC存储及通过企业级设备运行的Hadoop高级分析,提供一个单一、集中且易于实施的解决方案。

  数据湖Hadoop2.0包包括:

  · 企业级、HDFS兼容、横向扩展的Isilon NAS存储节点

  · 领先的企业级Hadoop Pivotal HD

  · DCA上预配置并优化调整过的Pivotal HAWQ,提供基于Hadoop的同类最佳高级分析。

  数据湖Hadoop包2.0今天正式发布。

  产业分析师证言:

  IDC研究总监AshishNadkarni

  “EMC和Pivotal为客户最需要的领域带来了巨大价值。在大数据时代,为横向扩展数据湖结合存储、计算和分析能力极具价值,加入预测功能意味着客户可以快速让该解决方案物尽其用,积极影响他们的底线。”

  EMC管理层证言:

  EMC产品和营销总裁Jeremy Burton

  “在全世界范围,大数据是第一提及的要题。但对许多企业而言,这意味着他们正密切关注如何存储并利用大数据的价值。EMC和Pivotal的这一打包方案面向今天的客户所需,他们正在构建自己的横向扩展数据湖,提供了一套交付Hadoop大数据分析的高性能系统。这是一个真正的交钥匙、端到端的解决方案,旨在有效处理海量数据。”

  Pivotal管理层证言:

  Pivotal总裁Scott Yara

  “大数据领域机会非常多,企业需要工具以有效地使用大数据。通过以打包形式提供面向数据湖的计算、存储和分析能力,EMC和Pivotal帮助客户真正捕获大数据的价值。我们正共同努力,让更多人更快地使用到它。”


作者:蔡思萌

来源:IT168

原文链接:EMC为预测性大数据分析交付数据湖方案

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
14天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
53 2
|
3天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
15 4
|
5天前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
47 5
|
16天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
70 14
|
22天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
67 2
|
23天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
23天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
24天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
84 2
|
25天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
63 1
|
26天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
下一篇
无影云桌面