《中国人工智能学会通讯》——11.76 基于深度学习的特征表示模型

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.76节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.76 基于深度学习的特征表示模型

随着数据规模不断增大,深度学习在大数据分析中扮演着越来越重要的角色。图 5 显示了数据规模与性能之间的关系,传统学习算法在数据规模达到一定时性能几乎不再增加,而深度学习算法的性能会随着数据规模增加而增加。通过深度学习进行特征表示学习已经成为了机器学习和数据挖掘社区的一个快速突起的方法,并已经在许多领域获得成功,如计算机视觉、语音识别和自然语言处理等。蒙特利尔大学 Bengio 教授在文献 [8] 中综述了这方面的最新进展。image
许多深度神经网络模型,如自编码器和受限玻尔兹曼机,均采用无监督学习的模式。举例来说,一个自编码器通过数据自身重构的方式来学习优化网络参数。另一方面,深度神经网络也可以采用监督学习模式,如纽约大学 LeCun 教授提出的卷积神经网络[10] 。然而,在 2006 年之前大多数监督学习模式的深度网络均不是很成功。事实证明,多层神经网络的预测能力往往比浅层学习模型(如 SVM)更差。2006 年,多伦多大学 Hinton 教授革命性地提出了深度置信网络(Deep Belief Network,DBN),一种非监督式的逐层贪心训练算法,为有效训练深度神经网络带来了希望。之后,多种深度神经网络被提出,如堆栈式降噪自编码器(StackedDenoising Autoencoders,SDAE) [11] 。这些深度学习模型往往采用无监督学习模型,已经被证明可以有效学习高层次表征。机器学习,尤其是分类和回归问题的主要目标是估计条件分布 P(Y|X)。所有基于无监督学习的预训练方法都基于一个假设:输入数据的边缘分布 P(X) 包含了关于条件分布P(Y|X) 的重要信息[12] 。当存在大量标记数据时,有监督学习方法往往非常有效。当只有少量标记数据而无标记数据可以轻易获取时,结合已有标记数据和大量无标记数据将能增加对边缘分布 P(X) 估计的准确性。图 6 给出了一个线性特征空间的实例(图中,(a) 无监督学习——仅使用无标记数据;(b)监督学习——仅使用标记数据;(c) 半监督学习——同时使用标记数据和无标记数据。圆圈表示无标记数据;三角、方块、五角星表示不同的标记数据),其中潜在表征可以仅通过无标记数据或标记数据学习得到,也可以同时从两者学习得到。不难发现,无监督学习方式可以更好地刻画数据分布;监督学习可以很好地进行分类,但是不能确保与本质的数据分布一致;半监督学习方式可以同时利用标记数据和无标记数据进行协同训练,有利于产生好的表征。image
经典的自编码器及其变种往往采用无监督学习方式,为使其同样可以使用标记数据,受到一些基于弱监督学习或半监督学习的自编码器算法[13-15]的启发,我们提出了一种新的学习模型,命名为SUGAR(Supervision-Guided AutoencodeR) [16] 。 图 7给出了相应网络结构图,主要包括以下三个部分。

● 主网络 (Main Network):用于重构输入,即无监督的自编码器;

● 辅助网络 (Auxiliary Network):基于对象间相似性,用于正则化学习到的网络,即有监督学习;

● 桥 (Bridge): 用于连接主网络和辅助网络,目的是增强两个网络之间参数的相关性。image
具体地,主网络使用无标记数据,可以采用正则自编码器(或降噪自编码器[11] );辅助网络使用标记数据(如成对标记),可以采用监督式学习方式(如哈希学习[17] );桥连接上面两部分,迫使它们的参数逼近。

基于 SUGAR 模型,我们给出了深度学习模型DeepSUGAR,如图 8 所示。DeepSUGAR 采用堆栈方式,将多个SUGAR堆起来形成一个深度学习模型,主要分为预训练和微调两个阶段。DeepSUGAR 的每一层是 SUGAR 模型,由主网络(实线框)、辅助网络(虚线框)和桥三个组件构成。f、h 表示编码函数,g 为解码函数,C 为区分函数。预训练后,所有虚线部分(包括 g 和 h)将被丢弃,整个系统通过编码函数 f 采用前馈传递方式产生紧致表征。image
我们在 8 个基准数据集上验证了模型的有效性。

相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的注意力机制:提升模型性能的关键
在深度学习的世界里,注意力机制如同一位精明的侦探,专注于细节之中发现线索。不同于传统方法的全局视角,它通过聚焦于输入数据的关键部分来提升模型性能。本文将带你领略注意力机制的魅力,从其工作原理到在各领域的应用实例,一探究竟如何让深度学习模型更“专注”。
|
1天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:智能药物研发与筛选
使用Python实现深度学习模型:智能药物研发与筛选
32 15
|
3天前
|
机器学习/深度学习 数据采集 存储
使用Python实现深度学习模型:智能保险风险评估
使用Python实现深度学习模型:智能保险风险评估
32 12
|
1天前
|
机器学习/深度学习 数据采集
深度学习中的模型优化:策略与实践
【9月更文挑战第9天】本文深入探讨了在深度学习领域,如何通过一系列精心挑选的策略来提升模型性能。从数据预处理到模型架构调整,再到超参数优化,我们将逐一剖析每个环节的关键因素。文章不仅分享了实用的技巧和方法,还提供了代码示例,帮助读者更好地理解和应用这些优化技术。无论你是深度学习的初学者还是有经验的研究者,这篇文章都将为你提供宝贵的参考和启示。
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的编程实践:从Python到深度学习的探索之旅
【9月更文挑战第6天】 在人工智能的黄金时代,编程不仅仅是一种技术操作,它成为了连接人类思维与机器智能的桥梁。本文将通过一次从Python基础入门到构建深度学习模型的实践之旅,揭示编程在AI领域的魅力和重要性。我们将探索如何通过代码示例简化复杂概念,以及如何利用编程技能解决实际问题。这不仅是一次技术的学习过程,更是对人工智能未来趋势的思考和预见。
|
3天前
|
机器学习/深度学习 数据采集 自然语言处理
如何使用深度学习模型来提高命名实体识别的准确率?
如何使用深度学习模型来提高命名实体识别的准确率?
|
6天前
|
机器学习/深度学习 人工智能 搜索推荐
揭秘AI的魔法:深度学习如何改变世界
在这篇文章中,我们将一起探索深度学习——一种强大的人工智能技术。我们将从基础开始,了解什么是深度学习以及它如何工作。然后,我们会看到深度学习是如何影响我们日常生活的各个方面,从医疗到自动驾驶汽车,再到个性化推荐系统。最后,我们将讨论深度学习面临的挑战和未来的可能性。让我们一起揭开深度学习的神秘面纱,看看这个“魔法”是如何改变我们的世界的。
|
7天前
|
机器学习/深度学习 数据采集 自然语言处理
如何使用深度学习模型来提高命名实体识别的准确率?
如何使用深度学习模型来提高命名实体识别的准确率?
|
2天前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
10 0
|
3天前
|
机器学习/深度学习 数据采集 存储
使用Python实现深度学习模型:智能医疗影像分析
使用Python实现深度学习模型:智能医疗影像分析
11 0

热门文章

最新文章