中国人工智能学会通讯——深度学习的迁移模型 一、迁移学习的三大优点

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

一、迁移学习的三大优点

为什么我们做迁移学习?我总结了三条原因。

●小数据。我们生活当中大量遇见的是小数据而不是大数据,当数据很稀疏,看到不同的类别我们还是能在当中做出很靠谱的模型。这并不是空穴来风,而是之前我们有过很多大数据的经验可以去借鉴,站在大数据的巨人肩膀上,所以人工智能大量的应用,迁移学习这种模式是必不可少的。

●可靠性。 即使我们有一个大数据模型,我们也很关心它的可靠性。把一个模型迁移到不同的领域,就会发现它的准确率会大量下降,如何防止这一点,就需要模型本身具有自适应的能力,能够自带迁移能力。

●个性化。整个社会,我们的应用在向一个个性化的方向发展,有了云端,有了各种各样的终端,终端的操作者都是我们个性化的人。那么我们让一个模型、一个服务来适应每个人的特性,迁移学习是必不可少的。

迁移学习的难点在于找出不变量

迁移学习又是很难的。教育学有一个概念叫“学习迁移”。就是说,如果一个学生学到了很靠谱的知识,怎样检测呢,就是看看他有没有能力迁移到未来的场景,再学一门新课他就发现学得容易,但是这种学习迁移能力的传输又非常难。

我们来看看怎样找出不变量。在国内和世界很多地方,驾驶员都是坐在左边,但是去香港,驾驶员就是在右边,很多人不会开车了,就会出现危险。如果用迁移学习教你一招马上可以开,而且很安全,就是找出一个不变量。这个不变量就是司机的位置总是靠路中间最近的,你就保持司机的位置离中线最近就可以了。

找出不变量很难,但是在其他的领域已经大量出现。最近Yann LeCun提出一个问题:机器学习的热力学模型是什么?我的回答是迁移学习,把一个领域里面的知识,也就是“能量”,转化到另外一个领域,这和热力学把两个物质放在一起,然后研究热能量是如何在物质间传播的,是类似的概念。区别是,在我们这里的知识比物理里的能量复杂很多倍。所以这个问题在科学上也有深远意义。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
26天前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
230 120
|
2月前
|
人工智能 数据挖掘 大数据
人工智能模型决策过程:机器与人类协作成效
决策智能(DI)融合AI与人类判断,提升商业决策质量。通过数据驱动的预测与建议,结合人机协作,实现更高效、精准的业务成果,推动企业迈向数据文化新阶段。(238字)
|
4月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
477 27
|
3月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
339 0
|
2月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
123 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
7月前
|
机器学习/深度学习 人工智能 算法
普通人怎么学人工智能?这些隐藏学习秘籍大揭秘,生成式人工智能认证(GAI认证)来助力
在人工智能(AI)快速发展的今天,普通人学习AI已成为必然趋势。本文从明确学习目标与路径、利用多元化资源、注重实践应用、关注GAI认证及持续自我提升五个方面,为普通人提供系统化的AI学习指南。通过设定目标、学习编程语言、参与项目实践和获取专业认证,普通人可逐步掌握AI技能,在未来职场中占据优势并开启智能时代新篇章。
|
7月前
|
人工智能 算法 安全
深度:善用人工智能推动高等教育学习、教学与治理的深层变革
本文探讨人工智能技术与高等教育深度融合带来的系统性变革,从学习进化、教学革新与治理重构三个维度展开。生成式AI作为技术前沿代表,正通过标准化认证体系(如培生的Generative AI Foundations)提升职场人士、教育者及学生的能力。文章强调批判性思维、高阶认知能力与社交能力的培养,主张教师从经验主导转向数据驱动的教学模式,并提出构建分布式治理结构以适应技术迭代,最终实现人机协同的教育新生态,推动高等教育在智能时代焕发人性光辉。
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
546 15
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型

热门文章

最新文章