磁盘性能压测二三事之——性能参数和指标

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: 本文就将通过对磁盘性能测试指标及参数的介绍,来理解以上两个原因为什么会对测试结果有影响。

近日工作中遇到了一个磁盘压测时性能上不去的问题,经排查,发现原因有以下几个方面:

1 测试参数的选择
2 业务逻辑未关闭

本文就将通过对磁盘性能测试指标及参数的介绍,来理解以上两个原因为什么会对测试结果有影响。

首先来介绍一下磁盘性能的测试指标。

最常用的磁盘性能评价指标有两个:IOPS和吞吐量(throughput)。IOPS是Input/Output Per Second的缩写,它表示单位时间内系统能处理的I/O请求数量,即每秒钟系统能处理的读写次数。
吞吐量衡量单位时间内系统能处理的数据的体量,即每秒钟磁盘上能读写出的数据量的大小,通常以kB/s或MB/s为单位。

两个指标相互独立,又相互关联,在不同业务场景下,侧重关注的指标也有所不同。

对于文件尺寸小,随机读写比较多的场合,比如在线交易处理系统,我们倾向于更关注IOPS,因为我们更在乎的是每秒钟能处理多少条交易。
而对于文件尺寸较大,顺序读写比较多的场合,比如视频播放服务,数据吞吐量将会成为我们主要的考量指标。

举个例子来帮助我们更好的理解这两个指标。磁盘IO就相当于我们有货物(数据)需要从A处(系统)与B处(磁盘)之间往返。货物(数据量)有多有少,因此运货车也有大有小。B处有装卸工人负责将货物卸载到仓库的指定位置,或者从仓库指定位置提取货物装载到货车上。

每次货车运输一趟货物就相当于处理一个IO请求,工人装卸货物就相当于磁盘对IO的读写处理。在工人数量和工人装卸货物速度(磁盘数据处理速度)保持一定的情况下,装卸大车上货物的时间一定会比小车上的时间长,装卸一大车货物的时间,可能已经够小车运输若干趟货物(IOPS高)。但是小车由于多次往返,其花在路上的时间要比大车多,同时每次装卸货物工人需要寻找正确的位置存取货物(磁盘寻址时间),比起大车的一次寻址,小车运货就也浪费了更多时间。因此在相同时间内,采用大车运输的货物总量是比小车要多的(吞吐量高)。

这也是为什么我们在做磁盘性能测试的时候,通常一次只关注一个指标,追求IOPS,就用小车运输少量货物,多次往返。追求吞吐量,就用大车运送大量货物,节省路上及寻址所花费的时间。

下面再说一下磁盘测试的影响因素。

实际测量中,IOPS会受到很多因素的影响,比如:

1 数据块大小
相当于我们前面说的大车和小车运货的情况

2 顺序和随机
顺序就是我们的货物都按顺序安排在仓库的一处,随机则意味着货物随机的分配在仓库的不同地点,可以想见,货物地点存放比较随机的情况下,存取货物一定是更费时间的。

3 队列深度
如果我们每次只发一辆货车在AB之间往返,那么当货车在A处处理货物或者在AB之间的路上跑的时候,B处的工人就处于闲置的状态,压力测试时,我们绝对不希望这种情况发生,我们需要工人(磁盘)一直工作,从而得出磁盘的最高性能。想实现这一点,我们可以通过一次发多辆车来解决,保持始终有车辆在等待处理的队伍里,这样装卸工人就一直有工作可做了。
队列深度就是等待处理的队伍里的货车以及正在被装卸的货车的总数量。

4 线程数
测试时,增加线程数也可以增加并发度,从而使装卸工人一直处于有工作可做的状态。

5 读写比例
读操作相当于我们将货从B中的仓库取出来,运到A处就结束了。而写操作意味着货物在A处经过一番处理之后还要再运回B处并存储在仓库中。因此不同的读写比例也会造成测试结果的不同。

正是由于这些不同影响因素的存在,我们在对磁盘进行性能测试时,需要仔细选择测试参数,否则将无法测出磁盘的最优性能。同时应将测试参数和方法定性定量,否则测试结果将失去比较的价值。

以 云盘参数和性能测试方法:
https://help.aliyun.com/document_detail/25382.html
一文中介绍的测试IOPS的方法为例,我们来看一下linux常用测试工具fio的参数如何体现以上影响因素。

测试随机写IOPS:
fio -direct=1 -iodepth=128 -rw=randwrite -ioengine=libaio -bs=4k -size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=/dev/[device] -name=Rand_Write_Testing
测试随机读IOPS:
fio -direct=1 -iodepth=128 -rw=randread -ioengine=libaio -bs=4k -size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=/dev/[device] -name=Rand_Read_Testing
测试写吞吐量:
fio -direct=1 -iodepth=64 -rw=write -ioengine=libaio -bs=1024k -size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=/dev/[device] -name=Write_PPS_Testing
测试读吞吐量:
fio -direct=1 -iodepth=64 -rw=read -ioengine=libaio -bs=1024k -size=1G -numjobs=1 -runtime=1000 -group_reporting -filename=/dev/[device] -name=Read_PPS_Testing

其中:
iodepth:队列深度。异步引擎下起作用。
rw: 读写模式,可选模式有顺序写write、顺序读read、随机写randwrite、随机读randread、混合随机读写randrw。
ioengine: 负载引擎。libaio引擎用于发起异步IO请求。
bs: IO块大小。
numjobs 测试线程数。

对比四个测试方法的参数我们可以看到,测试IOPS时我们采用小数据块(bs=4k),测试吞吐量时则用大数据块(bs=1024k)。这和我们前面说到的大货车小货车的选择原理是一致的。

队列深度对IOPS的影响要大于对吞吐量的影响,因为我们测试IOPS时选择的iodepth更大。但iodepth也不是越大越好,因为当装卸工人数量、装卸货物速度、仓库寻址时间一定之后,单位时间内所能处理的最大货物量也就确定了,即磁盘的能力确定了。一味增加队列深度,增加的只能是货物在队列里的等待时间,即平均IO响应时间。

我们可以通过查看装卸工人的忙碌程度来决定是否要增加队列深度。如果磁盘的busy%为100%,那就表示所有工人都在一刻不停歇的装卸货物了,已经不再有提升的空间,此时再增加队列深度或是数据量大小对测试结果都将是徒劳。反之,则表示磁盘压力尚未到极限,得出的数据不能代表磁盘性能最高水平。

磁盘压测时如果有其他业务逻辑在运行会怎样呢?这种情况就相当于有一部分货车装运的是业务逻辑的数据,而这些货车也会占用我们的队列和装卸工人,测试引擎将无法百分之百的使用全部队列和装卸工人,那么我们的测试结果将不能体现整个磁盘的能力。尤其是当业务逻辑所涉及的IO是同步(synchronous)请求的时候,对测试结果的影响将更大,因为同步IO就相当于前面说到的一次只让一辆车在路上跑,只有等它跑完才会发下一辆车。因此在压力测试的时候,我们需要将业务逻辑关闭的。

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
目录
相关文章
|
4月前
|
测试技术 数据库 UED
Python 性能测试进阶之路:JMeter 与 Locust 的强强联合,解锁性能极限
【9月更文挑战第9天】在数字化时代,确保软件系统在高并发场景下的稳定性至关重要。Python 为此提供了丰富的性能测试工具,如 JMeter 和 Locust。JMeter 可模拟复杂请求场景,而 Locust 则能更灵活地模拟真实用户行为。结合两者优势,可全面评估系统性能并优化瓶颈。例如,在电商网站促销期间,通过 JMeter 模拟大量登录请求并用 Locust 模拟用户浏览和购物行为,可有效识别并解决性能问题,从而提升系统稳定性和用户体验。这种组合为性能测试开辟了新道路,助力应对复杂挑战。
141 2
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
80 1
|
2月前
|
存储 缓存 监控
性能测试中关注的指标
性能测试关注多个层面的指标,包括系统层(CPU、内存、磁盘、网络)、中间件层(网关、数据库、缓存、MQ、分布式存储)、应用层(响应时间、吞吐量、应用资源、GC、错误信息)及业务层和发压机指标。这些指标帮助评估系统性能,识别潜在瓶颈,确保软件质量和用户体验。
208 4
|
4月前
|
缓存 Java 测试技术
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
使用JMeter对项目各个接口进行压力测试,并对前端进行动静分离优化,优化三级分类查询接口的性能
135 10
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
|
5月前
|
消息中间件 Kafka 测试技术
【Azure 事件中心】使用Kafka的性能测试工具(kafka-producer-perf-test)测试生产者发送消息到Azure Event Hub的性能
【Azure 事件中心】使用Kafka的性能测试工具(kafka-producer-perf-test)测试生产者发送消息到Azure Event Hub的性能
|
5月前
|
监控 Java 测试技术
实战派必看!Python性能测试中,JMeter与Locust如何助力性能调优
【8月更文挑战第6天】性能优化是软件开发的关键。本文介绍JMeter与Locust两款流行性能测试工具,演示如何用于Python应用的性能调优。JMeter可模拟大量用户并发访问,支持多种协议;Locust用Python编写,易于定制用户行为并模拟高并发。根据场景选择合适工具,确保应用在高负载下的稳定运行。
154 4
|
5月前
|
测试技术 数据库 UED
Python 性能测试进阶之路:JMeter 与 Locust 的强强联合,解锁性能极限
【8月更文挑战第6天】在数字化时代,确保软件在高并发下的稳定性至关重要。Python 提供了强大的性能测试工具,如 JMeter 和 Locust。JMeter 可配置复杂请求场景,而 Locust 则以 Python 脚本灵活模拟真实用户行为。两者结合,可全面评估系统性能。例如,对电商网站进行测试时,JMeter 模拟登录请求,Locust 定义浏览和购物行为,共同揭示系统瓶颈并指导优化,从而保证稳定高效的用户体验。
114 1
|
6月前
|
存储 监控 数据可视化
性能测试:主流性能剖析工具介绍
**性能剖析**是识别应用性能瓶颈的关键,涉及指标收集、热点分析、优化建议及可视化报告。常用工具有:**JConsole**监控JVM,**VisualVM**多合一分析,**JStack**分析线程,**FlameGraph**展示CPU耗时,**SkyWalking**分布式跟踪,**Zipkin**追踪服务延迟。这些工具助力开发人员提升系统响应速度和资源效率。
|
6月前
|
测试技术 Linux
linux 服务器运行jmeter 进行服务性能压测
linux 服务器运行jmeter 进行服务性能压测
486 0
|
6月前
|
Java 测试技术
用代码模拟调用接口方式压测现网服务器的服务性能
用代码模拟调用接口方式压测现网服务器的服务性能
43 0

热门文章

最新文章