中国人工智能学会通讯——打造云上视觉智能生态 1.4 视觉智能实例:城市之眼

本文涉及的产品
图像搜索,7款服务类型 1个月
简介:

1.4 视觉智能实例:城市之眼

视觉之眼,是城市的眼睛。我们要处理的是城市的摄像头,不管是交通、安防、城管,还是个人的,这些摄像头的数据,我们思考怎样把它的价值挖掘出来。里面涉及到的技术仍然是视觉数据的检测、识别、系统、搜索、挖掘等。

这个例子是交通视频的分析,对车辆的检测、车辆的跟踪、车辆的属性,就是将路面上发生的事情了解个底朝天。过去做交通优化时有两个信息源,第一个是地感线圈;但线圈数据不知道这个车的属性、车类型、车多长,这个车到哪里去了,这个信息不全。第二个数据,是GPS的数据,但一般只有少数人开启GPS,所以是采样数据。视频数据不同,是“眼见为实”,摄像头见到的才是真实完整的数据,所以这个数据是不可替代的。

这个例子是另外一种摄像头,高点的摄像头,虽然细节看不清楚,但是数数可以数得出来,而且,你任意画一个区域就知道关于这个区域物体的移动情况。比如经过多少辆车、大概的类型是什么;有的地方不让停车,你可以画个区域不让停,一旦有车停了就报警。这些技术也没有什么特别的地方,也有很多人做类似的工作。但是有一件事情不同,就是如果处理大量这样的数据,几万、几十万这样的数据,你需要在一个平台上进行实时处理,这就不是一个简单的事情,而且处理的效率要足够高,这是很关键的事情。我们有离线和实时两套处理系统,大规模离线视觉分析,这个是阿里的一套系统,对实时性要求不高的大量视频数据,离线比较容易处理。实时的原理也差不多,只不过有延时方面的要求。系统实现上,还有时间上的和空间上的实时协同。比如说,对一个路口的交通灯进行管控,你要看这四个路口,还要看旁边几个路口,你在实时分析时还需要把空间多路信息进行融合。时间和空间的协同问题,是由平台来支撑,而不是算法,这样我们做算法的人员就可以集中在算法的设计和优化上。

还有搜索的功能,刚才讲了电商的搜索,这个量级不小,但是还有一个量更大的就是城市的数据。城市的数据量太大了,里面有车、有人。人是非常难的事情,人脸相对容易,而看不清人脸的人就非常难;车相对容易一点,我们要学习它的结构化特征和它的非结构化特征,也就是用一个向量表示的视觉特征。

image

这里我稍微岔开来讲两个关于视觉数据的特别的例子,其实也是城市视觉识别技术的例子,但又是在数据的量上和我们直观的感受并不太一致的例子。第一个是车牌。数据这件事情是非常有意思的,刚才讲了大数据,但是刚才讲的数据一个是研发算法的原料,第二个是人工智能的原料。对于算法研发而言,往往需要大量的标注数据,但有时这样的数据并不容易获取,或者获取的成本比较高。例如车牌的识别,车牌看起来数据量很大,但双层黄车牌的量就要小很多。有一种思路就是自动生成一些车牌作为车牌识别的训练数据,这两幅图就是例子,是算法生成的以假乱真的车牌。这个车牌产生以后,对识别的准确率有显著性的提升。还有些场景,数据的获取更可怜,比如事故,但是你有大量正常的样本,一样可以用来作数据的模型,把它作为异常检测的问题来做就可以了。这上面是公开测试级上的结果,视频中间有人撒了一点纸,这个异常的检测响应是非常明显的;下面的这个例子是车辆的刮蹭,是个真实场景,难度就大多了。

image

从搜索的角度来讲,我们把整个城市的数据如果都收集起来,放到一个大数据里,建好索引,大家脑补一下,将会对城市的交通优化等应用产生什么样的影响。如果我们再进一步挖掘数据的价值,有很多应用场景可以考虑......

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来教育:探索智能教学的新纪元
【10月更文挑战第16天】 在21世纪这个信息爆炸的时代,技术革新正以惊人的速度改变着我们的生活和工作方式。其中,人工智能(AI)作为引领变革的先锋力量,不仅重塑了工业、医疗、金融等多个行业的面貌,也正悄然渗透进教育领域,预示着一场关于学习与教学方式的革命。本文旨在探讨人工智能如何为未来教育带来前所未有的机遇与挑战,从个性化学习路径的定制到教育资源的优化分配,再到教师角色的转变,我们一同展望一个更加智能、高效且包容的教育新纪元。
|
3月前
|
传感器 数据采集 机器学习/深度学习
人工智能与环境保护:智能监测与治理的新策略
【9月更文挑战第21天】人工智能在环境保护中的应用,为智能监测与治理提供了新的策略和方法。通过实时数据采集与分析、智能预警与应急响应、精准化决策支持等技术的应用,AI正在引领一场革命性的变革。未来,随着技术的不断发展和应用场景的拓展,AI将在环境保护中发挥更加重要的作用,助力我们构建更加绿色、可持续的未来。让我们携手共进,共同迎接一个更加美好的明天。
|
2天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
55 32
|
18天前
|
机器学习/深度学习 人工智能 运维
人工智能在云计算中的运维优化:智能化的新时代
人工智能在云计算中的运维优化:智能化的新时代
115 49
|
1月前
|
人工智能 监控 物联网
深度探索人工智能与物联网的融合:构建未来智能生态系统###
在当今这个数据驱动的时代,人工智能(AI)与物联网(IoT)的深度融合正引领着一场前所未有的技术革命。本文旨在深入剖析这一融合背后的技术原理、探讨其在不同领域的应用实例及面临的挑战与机遇,为读者描绘一幅关于未来智能生态系统的宏伟蓝图。通过技术创新的视角,我们不仅揭示了AI与IoT结合的强大潜力,也展望了它们如何共同塑造一个更加高效、可持续且互联的世界。 ###
|
29天前
|
机器学习/深度学习 存储 人工智能
政务部门人工智能OCR智能化升级:3大技术架构与4项核心功能解析
本项目针对政务服务数字化需求,建设智能文档处理平台,利用OCR、信息抽取和深度学习技术,实现文件自动解析、分类、比对与审核,提升效率与准确性。平台强调本地部署,确保数据安全,解决低质量扫描件、复杂表格等痛点,降低人工成本与错误率,助力智慧政务发展。
|
4月前
|
人工智能 监控 算法
智能时代的伦理困境:AI技术的道德边界探索人工智能在教育领域的革新之路未来编程:人工智能与代码共生的新篇章
【8月更文挑战第21天】在人工智能(AI)技术飞速发展的今天,我们正处在一个前所未有的科技变革时期。随着AI技术的深入人类生活的方方面面,它不仅带来了便利和效率的提升,同时也引发了关于道德和伦理的深刻讨论。本文将探讨AI技术发展中遇到的伦理挑战,以及如何建立合理的道德框架来指导AI的未来应用,确保技术进步与人类社会价值观的和谐共存。
253 61
|
2月前
|
机器学习/深度学习 移动开发 自然语言处理
基于人工智能技术的智能导诊系统源码,SpringBoot作为后端服务的框架,提供快速开发,自动配置和生产级特性
当身体不适却不知该挂哪个科室时,智能导诊系统应运而生。患者只需选择不适部位和症状,系统即可迅速推荐正确科室,避免排错队浪费时间。该系统基于SpringBoot、Redis、MyBatis Plus等技术架构,支持多渠道接入,具备自然语言理解和多输入方式,确保高效精准的导诊体验。无论是线上医疗平台还是大型医院,智能导诊系统均能有效优化就诊流程。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
智能新纪元:人工智能如何重塑我们的未来
想象一下,未来的世界被一种无形的智能所包围,它不仅理解我们的需求,还能预测我们的欲望。这不是科幻小说的情节,而是人工智能(AI)技术正在逐步实现的愿景。本文将带你一探AI技术的最新进展,以及它是如何悄然改变我们的生活、工作和思维方式。从深度学习到自然语言处理,我们将一同见证这场科技革命如何开启智能新纪元的大门。
|
3月前
|
机器学习/深度学习 数据采集 人工智能
智能化运维的探索之旅:从自动化到人工智能
在数字化浪潮中,运维领域正经历一场革命。本文将带你领略从传统手动操作到自动化脚本,再到集成人工智能的智能运维平台的演变之路。我们将探讨如何通过技术创新提升效率、降低成本并增强系统的可靠性和安全性。文章不仅分享技术演进的故事,还提供了实现智能化运维的实践策略和未来趋势的展望。