安全人工智能应用之我见:时代“风口”的交叉点

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 当有一天,100%的企业都安家云上,安全一定不是仅仅用人力可以解决的问题,每个机器大脑背后的智慧,是推动云安全前进的关键。

编者按:1011-14日,为期四天的2017杭州云栖大会(门票火热抢购中!)将再度在杭州云栖小镇起航,作为全球最具影响力的科技展会之一,本届大会将有不少阿里集团专家以及各企业行业领袖的精彩演讲。本文是阿里云资深算法专家施亮所写,他将在10月的云栖大会上分享安全智能带来的思考和变革(想了解嘉宾以及最新议题信息请关注云栖大会公众号

55bab71ea5dd095a844891a08fad6a299d542dab

施亮

从年初的RSA大会,到前两周刚结束的Blackhat和Defcon,这些大会上一个热议的焦点,就是人工智能和机器学习技术,在安全领域和产品上的应用。

给人的印象是,如果一个安全产品,现在没有运用机器学习技术,都不算是有价值的产品。以人工智能驱动的安全公司也受到了资本的青睐,2017年6月份以来就至少有7家号称运用机器学习技术的安全公司获得新一轮融资,融资总额接近 5 亿美元。

实际上,机器学习技术,在安全领域应用并不是什么新鲜事物。早在10几年前,机器学习和统计分析模型已经应用于垃圾邮件检测、IDS、恶意二进制、URL和DNS分析等领域;特别是垃圾邮件的检测,在十年前,就有非常成熟的商业产品,而机器学习引擎,是其核心检测部分。机器学习能早期应用于垃圾邮件的商业产品,主要原因是垃圾邮件历史上样本的积累足够丰富,而且安全公司愿意投入大量的运营人员进行打标。

当时国外业界一家大型安全公司,邮件的打标团队就有上百人,每日由检测引擎和人工确认的样本,有几十万级之多。邮件用户反馈和灰样本的人工打标,形成了良好的数据闭环,机器学习模型优化迭代很快。而大量精准的样本,和良好的数据闭环,正是机器学习成功应用的基础。

工业界在机器学习安全应用的过往发展史上,有两次大的性能突破性提升,一次是机器学习新技术的应用,一次是数据计算能力的提升。还是以垃圾邮件检测举例,10年前,随机森林RF、GBDT等boosting方法开始流行,这些模型对抗overfitting的能力非常强。

当时国外业界某家大型安全公司内垃圾邮件的机器学习检测模型和各种规则集有上百个,用stacking的方法输出,每个模型或者规则集的贡献权重是由其历史表现决定的。在机器学习的新技术RF、GDBT引入后,最后起统治地位权重dominant weights的,都是使用RF、GBDT等技术的模型,一举可以提升检测精度几个百分点。另一次突破,就是云计算的引入。

最早的机器学习模型特征,都是用大型关系数据库计算的,这家公司当时在全球有6个数据中心,每日回吐的数据量有几百G到T级,昂贵的Oracle系统和数据库query优化专家,也不能很好的解决海量数据query的效率问题,当时有些特征的计算需要1天以上的时间;而有些spam IP的发送时间,是以小时计算的,等到特征产生,spam IP已经转移,拦截效果大打折扣。

2008年,公司内数据挖掘研究小组开始尝试搭建Hadoop,首先用公司计算中心淘汰的废旧机器,搭建了12台服务器的Hadoop集群,使用优化的MapReduce算法,只用了10分钟的时间,就能计算出Oracle大型服务器上一天都计算不出的特征。基于云计算技术的特征工程,训练出的1小时、2小时实效的快速检测模型,将垃圾邮件的拦截效率,又提升了几个百分点。

0032bea181b0405f88bdcf976c5966f02343d1f7

技术的演进总是类似的。21世纪10年代以来, 机器学习领域兴起的深度学习热潮,推动了图像视频、语音、自然语言处理等方向的突破性进展,深度学习的成功,其实是神经网络模型方法理论加GPU集群计算能力的进步,两者叠加所以进展更加迅猛。最近两年,深度学习开始在安全应用领域落地,例如在恶意二进制检测领域,国外的Deepinstinct和国内的瀚思科技,都有深度学习的商业化产品。

深度学习的优势在于,模型的特征工程,相对不需要太深的安全领域经验,深度学习的输入向量化方法、模型的结构和参数设置,就基本可以决定模型的表现。

相对于其他的分类模型,由于需要深厚安全领域经验支撑的特征工程,特征依赖程度大,模型往往受制于特征提取问题,而深度学习的优势就凸显出来;深度学习的另外一个特点就是匹配复杂度高的模型优势非常明显,这是深度学习模型的多层神经网络组合实现超高非线性适配导致的。当然,深度学习在安全领域的应用也有它的局限性,一是深度学习模型训练需要大量的覆盖范围全面的正负样本,在安全领域,满足这种要求的场景很少;二是深度学习模型适合原子化的数据特征输入,安全领域中,原子化数据特征,在大多数领域,都是比较困难的;三是深度学习是黑盒算法,模型的可解释性很差,对于传统安全运营分析来说,模型的产出很难做类似安全规则的分析和调整。所以深度学习在安全领域的应用,现在还主要集中在恶意二进制检测和WAF等样本比较丰富、输入比较容易原子化的领域。

深度学习加强化学习(RL)的办法在棋牌类的应用,已经超越了人类的水准。

大家都知道AlphaGo的一代和二代,在番棋大战中,连续战胜了人类职业围棋的顶尖棋手;今年1月30日,在宾夕法尼亚州匹兹堡的Rivers赌场,卡耐基梅隆大学(CMU)开发的人工智能系统Libratus战胜4位德州扑克顶级选手,获得最终胜利。

虽然人工智能技术在棋牌领域已经可以随意碾压人类对手,但是在安全领域,人工智能想要在网络攻防对抗上战胜人类黑客,这个道路,从现在的技术看,我认为还比较漫长。原因是不管围棋也好,德扑也罢,虽然变化极多,分别达到10的171次方和10的160次方,但是它们的输赢规则是非常简单,很容易用数学模型描述。只要用合适的机器学习方法,就会在类似的brute force领域取得突破。但是在安全领域,类似的规则描述一般都是极其困难,因为人类黑客的攻击和网络安全专家的防守,并不会遵从现有的固定的一套规则,所以很难用数学模型去描述攻防领域的对抗。目前人工智能对这种创造性很强的领域,效果都不是很好。

一个值得注意的趋势是Generative Adversarial Networks(GANs)的发展,GANs最早由Ian Goodfellow于2014年提出,其基本思想是同时训练两个神经网络,一个网络训练产生混淆攻击样本,一个网络训练识别混淆样本,两个网络互相学习演进。GANs出现后,成功的被用于图片样本的混淆,例如成功的欺骗深度学习引擎,使其将大熊猫图片识别为长臂猿。在安全应用领域,GANs已经被用来产生Malware的混淆样本,今年Blackhat的一篇文章,作者声称自己训练的GANs样本,可以欺骗现在的商业Malware识别引擎,使其误识别率超过70%。

综合这两个进展,今后安全人工智能领域,RL和GANs会得到更广泛的应用,RL主要会用来解决安全领域的样本问题,随机生成或者按照某种规则生成的样本,可以不停的强化模型对某类攻击或者某类正常访问混淆行为的学习,同时提高模型识别的精确率和覆盖率;GANs当前主要用于攻击方对使用机器学习检测引擎的欺骗攻击,从防守方的视角来说,同样可以使用GANs技术,增强自己的检测模型针对混淆黑样本的检测能力;另外,GANs有可能被用于一些攻防规则比较容易用数学模型定义的安全领域,在某些安全领域实现人工智能机器自动攻防的梦想前景。笔者认为,在Malware攻防领域,由于样本的成熟度比较高,安全公司的运营团队成熟,加上这个领域企业的安全需求比较大,所以最有可能取得类似的突破。当前学术界的研究,已经初现Malware自动攻防的端倪。在这个领域笔者认为可以重点关注两个公司,一个是Cylance,一个是Deep Instinct。Cylance广泛使用机器学习技术用于其安全产品,主打的Malware检测产品,大量使用机器学习模型,这个是机器学习广度运用的成功case。 Cylance在去年获得1亿美元的D轮融资。Deep Instinct号称是业界第一家运用深度学习技术进行APT检测的公司,它的Off-the-Shelf Malware检测引擎,在针对阿里云Malware样本上的实测,也取得了不错的成绩。Deep Instinct在上个月刚获得B轮3200万美元的融资。

另外一个快速发展的安全领域将是IoT安全。随着智能设备广泛的应用,IoT在今后几年的发展会更加迅猛,但是由于IoT设备的特性以及历史原因,IoT设备的安全防护一直处于一个低水平。早在2010 年,Stuxnet 蠕虫病毒就针对西门子的监控与数据采集(SCADA)系统进行攻击;去年10月, Mirai恶意软件侵袭了大量存在低级漏洞的智能摄像头、网关、家电等IoT设备,并利用它们作为肉鸡,攻陷了北美地区的主要DNS服务器,使得北美基于DNS的大规模的互联网访问,中断了数个小时,造成很大损失。今后IoT设备,天然结合云端的设备数据上传,会是机器学习发挥能力的绝佳战场。这个领域可以关注一些初创公司例如Bayshore Networks,这家公司在今年3月取得440万美元的A轮融资。

安全领域应用场景对机器学习算法的应用有几个特殊的要求,一是对误报率的要求非常高。误报的含义就是将正常的用户行为解读为攻击。最近几天Facebook颁了一个十万美金的安全奖,给CMU的一个鱼叉钓鱼攻击检测研究团队,主要技术因素就是这个检测方法的误报率非常低。安全领域的问题,如果误报高,就算告警结果涵盖所有的攻击,实际的结果仍然不可用,因为没有哪家公司可以提供庞大数量的安全工程师,去分析过滤机器学习的告警,遑论安全工程师的水平也会参差不齐,会有人工误差。二是安全领域的问题,往往没有ground truth,也有人喜欢说没有上帝视角。也就是说,其实没有人知道某种异常行为,到底是不是攻击,这个事情听起来很沮丧,但是这个确实是现实,一些诡异和精心设计的攻击,很难用常规的办法去确认。造成机器学习模型,在这种场景下,没有反馈,很难形成数据闭环去不断优化;三是在安全领域,大多数的问题,没有样本或者极少的样本,导致很难建立相对比较精准的监督学习模型,无监督学习的模型,又会造成问题一中误报率高的问题。综上所诉,这三个问题互相交织作用,造成机器学习在安全领域的应用一直比较艰难。

近年来云计算的发展,为解决上述难题,提供了一个良好的环境;云平台本身每天面对的攻击体量和频率都远远大于线下环境,比如,阿里云平台每天防御的体量为16亿次攻击,其中成功防御的DDoS攻击占全网一半以上,对攻击数据的甄别和保存,形成了大量和多样性的攻击样本沉淀;

另外,云计算平台本身提供了海量数据的计算能力,对人工智能大数据模型提供了平台级的计算支持。在阿里云, 我们依托阿里云计算平台和大数据的优势、国内顶尖的安全和机器学习算法人才, 针对上述难题,找寻和攻克解决这些问题的答案。这也是我认为基于云的安全算法,大有可为的原因。

针对安全告警误报的问题,我们运用较长历史的大数据流量,使用统计学习模型+深度学习模型,学习人、设备等的正常行为,如果现有安全告警被这些模型分辨为历史上出现过的正常访问行为,就可以判断为误报,使用这种方法,我们可以将目前主机入侵的日告警量,降低85%以上,并且全部保留对阿里云真正有威胁的攻击告警。

针对第二个问题,我们从工程上运用灰度测试的技巧,及时比对模型和模型之间,模型和安全规则之间的误差,从有限的用户反馈,来最大限度的达到拦截攻击流量,同时保留正常用户的访问不受干扰。为了解决上述第三个问题中提到的没有样本或者样本少的问题,除了做好数据打标的留存工作,我们还使用了深度学习模型去生成样本,再用当前的机器学习检测模型做样本的甄别, 生成的混淆样本可以极大的增强现有模型的鲁棒性 [1] ,这里我们引入了一个强化学习样本生成的思想,使用机器学习模型自身,去加强机器学习模型自己。

阿里云安全的数据智能团队,主要运用机器学习技术,支持阿里云平台自身的安全,也让安全服务变得更智能、高效。我们希望将安全传统的防守视角,转变为攻守兼备。

安全是网络安全和人工智能时代“风口”的交叉点。我从机器学习算法出身,在安全领域游荡了9年,研究风控、机器学习和算法研发,但至今仍深感对这两个领域的了解不足。对于安全算法的未来之星们,我的建议是:均衡发展,同时培养和积累两个领域的能力和经验,并且不断付诸于实践,才是在这个行业里成就自己梦想的关键突破口。

据我所了解,每年国内的安全人才缺口在10万级,从事安全事业的人才,又掌握机器学习算法武器的,少之又少。于我来说,交叉型人才最聚集的地方,除了国内外顶尖的安全公司和人工智能厂商之外,还有各大高校,这也是为什么,阿里云每年举办安全算法大赛,从行业和高校,寻找“跨界”的参赛队伍。在切磋与合作中,每年1000多位来自算法或者安全领域的高手,取长补短,激发出新的灵感和技术方向。不仅如此,安全算法虽然目前“稀缺”,但在未来,必然会成为云安全的必备武器。当有一天,100%的企业都安家云上,安全一定不是仅仅用人力可以解决的问题,每个机器大脑背后的智慧,是推动云安全前进的关键。

一切技术发展的背后,人才是最珍贵的源泉。我们当下的所思、所想和所为,会在一次又一次的技术变革中得到印证。而我们现在要做的,就是开始。

云栖大会购票通道请戳这里


1鲁棒是Robust的音译,也就是健壮和强壮的意思。 它是在异常和危险情况下系统生存的关键。 比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。 所谓鲁棒性,是指控制系统在一定(结构,大小)的参数摄动下,维持其它某些性能的特性。

云栖大会报道:

专访新浪微博黄波:千人千面,机器学习赋能用户信息流消费

专访iDST NLP负责人——淘宝内容搜索、评价归纳的幕后英雄

专访阿里云易立:从实践积累到需求沉淀,容器技术必将引领主流

专访阿里云异构计算负责人:异构计算,GPU、FPGA、ASIC芯片将三分天下

专访阿里云量子技术首席科学家施尧耘:量子计算前途辉煌而任重道远

专访iDST华先胜:城市大脑,对城市的全量、实时认知和搜索

云栖大会变迁史(2009-2017)
图说历届云栖大会精彩内容(长图鉴赏)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
7天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
40 3
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
76 2
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
5天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
34 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
17 4
|
1天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
4天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景
人工智能在医疗诊断中的应用与前景
|
6天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能在医疗健康领域的革新应用
人工智能在医疗健康领域的革新应用
19 0

热门文章

最新文章

下一篇
无影云桌面