《中国人工智能学会通讯》——6.6 实体消歧技术研究

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第6章,第6.6节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

6.6 实体消歧技术研究

实体是文本信息的重要承载,每一段有意义的文本都描述了一组实体及这些实体相互之间的关联和交互。识别并理解文本中的实体信息也就成为了自然语言理解的基础问题之一。

然而,文本中实体信息的理解存在两方面的挑战。首先,文本中的实体名通常具有歧义。例如,给定如下三个包含“苹果”的句子:

●  今 天 上 午 苹 果 由 乔 布 斯 发 布 了 新 一 代iPhone。
●  我早餐吃了一个苹果。
●  范冰冰在苹果中演的不错。

上述三个句子中的 “苹果”分别指向实体“苹果公司”、“水果苹果”及“电影苹果”。其次,实体的提及(mention)形式具有多样性,也就是人们可能会用不同的实体名来指向同一个实体。例如,在提到 IBM 公司时,人们可以使用 IBM、Big Blue 或 International Business MachinesCorporation 等不同名字。为解决实体名的歧义性和多样性问题,在许多应用中需要确定实体名所指向的真实世界实体,也就是实体消歧 (EntityDisambiguation)。图1展示了一个实体消歧的示例。image
随着大数据时代的到来,实体消歧已经成为了许多重要应用和任务的基础技术,在越来越多的地方发挥重要作用,例如:

知识图谱的构建和补全。自然语言理解和类人智能推理一直是人工智能的长期目标之一。然而上述两项任务都依赖于海量的世界知识,也就是知识图谱的帮助。通过识别知识图谱中特定实体在文本中的出现,同时发现文本中知识图谱未覆盖的实体,实体消歧在知识图谱的构建和补全上都起到重要作用。

基于知识的自然语言理解。近年来越来越多的智能信息服务(如苹果的智能手机助手 SIRI 和IBM 的 Watson 智能问答系统)依赖于海量自然语言文本的分析和理解。然而在过去几十年里,绝大多数计算机自然语言处理技术仅利用了句子的表层词法和句法信息[1] 。与之相对的是,人类理解自然语言会利用到许多语言深层信息,甚至很多外部世界知识[2-3] 。通过建立文本中实体名与知识图谱中真实世界实体之间的关联,实体消歧可以有效地在自然语言理解过程中引入知识图谱中存储的大量世界知识,从而为基于知识的自然语言理解奠定基础。

当前实体消歧的主流技术是实体链接 (EntityLinking) 技术,下面分别从任务、系统、主要技术挑战、发展趋势等多个方面来介绍实体链接。

相关文章
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
257 4
|
7月前
|
人工智能 自然语言处理 算法
生成式人工智能认证(GAI认证)与标准化进程协同发展及就业市场赋能研究
本文探讨生成式人工智能认证(GAI认证)在人工智能标准化进程中的重要性,分析其对就业市场的积极影响及未来发展趋势。GAI认证不仅是个人AI能力的权威认可,还推动行业标准化与技术创新。文章指出,随着技术融合加速和应用场景拓展,GAI认证标准需不断完善,以应对技术更新、数据安全等挑战,为AI健康发展贡献力量。
|
6月前
|
人工智能 语音技术
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
|
6月前
|
人工智能 自然语言处理 API
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
864 62
|
6月前
|
数据采集 人工智能 缓存
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
深挖“全栈智算”之力 中兴通讯开启AI普惠新纪元
180 1
|
7月前
|
人工智能 算法 搜索推荐
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
828 2
|
10月前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
9天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
|
15天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
221 12

热门文章

最新文章