《网络空间欺骗:构筑欺骗防御的科学基石》一2.4.3 实施和集成欺骗

简介: 本文讲的是网络空间欺骗:构筑欺骗防御的科学基石一2.4.3 实施和集成欺骗,本节书摘来华章计算机《网络空间欺骗:构筑欺骗防御的科学基石》一书中的第2章,第2.4.3节, Cyber Deception: Building the Scientific Foundation 苏西尔·贾乔迪亚(Sushil Jajodia)V. S.苏夫拉曼尼(V. S. Subrahmanian)[美] 维平·斯沃尔(Vipin Swarup) 著 克利夫·王(Cliff Wang) 马多贺 雷程 译 译更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.4.3 实施和集成欺骗

本文讲的是网络空间欺骗:构筑欺骗防御的科学基石一2.4.3 实施和集成欺骗,许多欺骗机制作为一个单独的与真实系统不相交的组件而实现,例如蜜罐。随着许多被恶意敌手和恶意软件所使用的检测技术的发展,攻击者可以检测他们是在真正的系统里还是在“假”系统里[25],然后相应地改变行为,正如本章前面所讨论的那样。一个成功的欺骗操作需要与实际操作结合。蜜词本方案[24]就是这种紧密结合的例子,因为它没有明显的可以区分“真假”密码的方法。

原文标题:网络空间欺骗:构筑欺骗防御的科学基石一2.4.3 实施和集成欺骗

相关文章
|
4月前
|
监控 安全 网络协议
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
509 1
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
|
6月前
|
安全 KVM 虚拟化
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
327 2
Cisco Identity Services Engine (ISE) 3.4 - 基于身份的网络访问控制和策略实施系统
|
SQL 运维 安全
网络安全等级保护2.0 定级、评测、实施与运维-复习题目资料
本文详细总结了网络信息安全等级保护的练习题,包括单选题、多选题、判断题和简答题。供朋友们参考复习,学习相关领域知识参考。
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
1707 2
|
监控 安全 测试技术
在实施自动化和持续集成的过程中,如何确保代码的安全性和合规性
在自动化和持续集成中,确保代码安全与合规至关重要。措施包括集成自动化安全工具、执行自动化合规检查、进行代码质量与安全检测、评估开源代码安全、实施基础设施即代码的安全标准、采用多层防御策略、加强安全教育与文化建设、使用合规性检测工具及许可证合规分析等,共同提升代码安全性与合规水平。
273 5
|
监控 安全 测试技术
在实施自动化和持续集成的过程中,如何确保代码的安全性和合规性?
在实施自动化和持续集成的过程中,如何确保代码的安全性和合规性?
223 6
|
网络协议 网络安全 数据安全/隐私保护
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
293 4
|
网络协议 网络安全 数据安全/隐私保护
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
【10月更文挑战第27天】计算机主机网关的作用类似于小区传达室的李大爷,负责将内部网络的请求转发到外部网络。当小区内的小不点想与外面的小明通话时,必须通过李大爷(网关)进行联系。网关不仅帮助内部设备与外部通信,还负责路由选择,确保数据包高效传输。此外,网关还参与路由表的维护和更新,确保网络路径的准确性。
306 2
|
存储 监控 安全
如何实施有效的网络安全策略?
【10月更文挑战第13天】如何实施有效的网络安全策略?
836 5
|
机器学习/深度学习 算法
ATFNet:长时间序列预测的自适应时频集成网络
ATFNet是一款深度学习模型,融合时域和频域分析,捕捉时间序列数据的局部和全局依赖。通过扩展DFT调整周期性权重,结合注意力机制识别复杂关系,优化长期预测。模型包含T-Block(时域)、F-Block(频域)和权重调整机制。实验证明其在时间序列预测任务中表现优越,已发布于arXiv并提供源代码。
676 4

热门文章

最新文章