《中国人工智能学会通讯》——1.34 应 用

本文涉及的产品
文档翻译,文档翻译 1千页
文本翻译,文本翻译 100万字符
NLP 自学习平台,3个模型定制额度 1个月
简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第1章,第1.34节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

1.34 应 用

自然语言处理的应用非常广泛,这里我们主要回顾下文本匹配、机器翻译、问答系统和自动文摘这四个比较有代表性的应用领域。

(1)文本匹配
文本匹配是计算给定两个文本序列的相关度。自然语言处理的很多任务可以归结为文本匹配任务,比如文本检索、文本蕴涵、问答对匹配等。Hu 等人[14]提出了两种基于卷积神经网络的文本匹配模型。一种是分别建模两个句子,得到句子编码。然后将两个句子编码输入给多层感知器来计算它们的相似度。另一种是将两个句子拼成一个矩阵,每一个矩阵元素是对应的两个句子中相应位置上词嵌入拼接而成的向量。然后利用两维卷积网络来建模相关性。Qiu 等人[17]利用动态卷积神经网络来建模句子编码,并利用张量神
经网络来更加有效地建模它们之间的关系。Wan 等人[18]利用双向 LSTM 模型来分别建模两个句子,再按不同位置上双向 LSTM 的输出建立一个相似度矩阵,然后通过一个子采样层输入给多层感知器来建模相关度。这些方法都是采用端到端的训练方法,非常有利于模型的优化。

(2)机器翻译
早期的基于神经网络的机器翻译系统是在传统模型中引入深度学习模型作为辅助特征。比较有代表性的是,Devlin 等人[19]将神经网络语言模型引入到传统机器翻译框架的解码过程,并取得了 3 个 BLEU 值的提升。该工作也得到了 2014 年 ACL 的最佳论文奖。之后,越来越多的研究者开始采用端到端的深度学习模型来进行机器翻译。Sutskever 等人[20]采用了单一神经网络架构的序列到序列模型。首先利用一个 LSTM模型来得到源语言的向量表示,然后再利用一个基于LSTM 的语言模型来生成目标语言。序列到序列的机器翻译模型如图 1 所示。ABC 为源语言,WXYZ 为目标语言。Bahdaau 等人[21]在序列到序列的机器翻译模型的基础上,在生成目标语言时,加入了注意力机制来自动学习目标词在源语言上的对齐词。Dong 等人[22]利用多任务学习方法来联合学习从一种源语言到多个目标语言的翻译模型。通过在一对多的序列到序列的机器翻译模型中共享源语言的表示,可以更有效地建模源语言端的编码模型。Meng 等人[23]利用神经图灵机[24]来建立一个深层的记忆神经网络,并取得了很好的翻译效果。不同层的记忆之间通过控制器和读写操作进行交互。
image

(3)自动问答
自动问答是指给定一个背景语料库或一些事实,系统可以自动分析输入的问题,并利用语料库中的知识给出答案。传统的自动问答系统一般分为很多模块。每个模型分别进行优化。随着深度学习算法的不断发展,人们开始关注如何学习一个端到端的完全基于神经网络的自动问答模型。Kumar 等人[25]
提出了一个基于动态记忆神经网络的自动问答系统。借鉴 LSTM 模型中的记忆模块的想法,建立一个外部的记忆模块,并用 GRU 模型来编码给定的背景事实信息作为情景记忆,然后用另外一个 GRU 模型来得到问题的表示,再利用注意力机制来建模问题表示和情景记忆之间的交互,并生成答案。整个系统可以进行端到端的联合训练。图 2 给出了基于动态记忆神经网络的自动问答系统示例。Sukhbaatar 等人[26]也提出了一个类似的端到端的
基于记忆神经网络的自动问答模型。和 Kumar 等人的模型不同之处在于用了不同的外部记忆模块的表示机制以及不同的问答到情景记忆的交互机制Hermann等人[27]利用双向 LSTM 模型,提出了三种不同的交互机制建立问题和背景文档的联合表示,然后通过一个分类器来预测答案。
image

(4)自动文摘
自动文摘是指自动地从原始文章中提取一个简短的能够全面反映原文内容的摘要。自动文摘有两种类型,一种是抽取式文摘,从原始文章中抽取一些代表性的句子;另一种是理解式文摘,先理解原始文章,在通过自然语言生成来产生摘要。受到传统方法的限制,以前的自动文摘一般是抽取式文摘,并且研究进展缓慢,逐渐受到冷落。自动文摘又开始逐渐成为研究热点。一开始研究者关注于如何利用分布式表示来改进抽取式文摘方法中的句子之间的相似度计算 [28-29] 。随着深度学习在统计语言模型的成功,并在端到端机器翻译模型的启发下,研究者开始关注如何直接建立一个端到端的基于神经网络的理解式自动文摘系统。Rush 等人[30]尝试利用神经词袋模型、卷积神经网络模型以及基于注意力的卷积神经网络模型来得到原始文章的向量表示,然后再通过神经语言模型来生成摘要。通过大规模的训练数据,在 DUC 自动文摘数据集上取得了很好的效果。

综上所述,深度学习在自然语言处理领域的进展非常迅速。两年前人们还认为深度学习对语言这种非自然信号并不有效。通过这两年的发展,深度学习方法已经在自然语言处理的很多任务上都取得了很大的进展,并超越了传统统计学习的方法。虽然取得的进展和语音识别、计算机视觉领域相比还不太显著,但是已经大大提升了研究者对深度学习在自然语言处理领域上的预期。此外,随着对深度学习认识的加深,研究者逐渐开始摆脱传统自然语言处理框架的限制,采用全新的深度学习框架来进行端到端的自然语言处理,并且也催生了很多新的应用,比如看图说话、自动写作等。相信未来几年,深度学习方法在自然语言处理领域会取得更大的突破。

目录
打赏
0
0
0
0
325
分享
相关文章
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
95 11
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
195 0
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
59 13
人工智能在客服领域有哪些应用?
人工智能正在彻底改变着传统客服行业,它不仅拓展了业务边界,还推动着整个行业向更高效、更人性化方向迈进。
86 7
人工智能在农业中的应用:智慧农业的未来
人工智能在农业中的应用:智慧农业的未来
116 11
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
344 10
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
165 14
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等