《Web安全之机器学习入门》一 1.2 人工智能的发展

简介: 本节书摘来自华章出版社《Web安全之机器学习入门》一 书中的第1章,第1.2节,作者:刘焱,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.2 人工智能的发展

1.谷歌大脑
谷歌大脑是“Google X实验室”一个主要研究项目,是谷歌在人工智能领域开发出的一款模拟人脑的软件,这个软件具备自我学习功能。Google X部门的科学家们通过将1.6万台电脑的处理器相连接建造出了全球为数不多的最大中枢网络系统,它能自主学习,所以称之为“谷歌大脑”。2012年,谷歌的工程师曾经公布了一个令人激动的研究结果,他们使用了1 000台计算机、16 000个处理器10天昼夜不停地运转,通过模拟大脑细胞,在Youtube的视频中捕获了1 000万张图片学习识别猫、人以及其他事物。
2.百度无人车
百度无人驾驶车项目于2013年起步,由百度研究院主导研发,其技术核心是“百度汽车大脑”,包括高精度地图、定位、感知、智能决策与控制4大模块。其中,百度自主采集和制作的高精度地图记录完整的三维道路信息,能在厘米级精度实现车辆定位。同时,百度无人驾驶车依托国际领先的交通场景物体识别技术和环境感知技术,实现高精度车辆探测识别、跟踪、距离和速度估计、路面分割、车道线检测,为自动驾驶的智能决策提供依据。
2015年12月,百度公司宣布,百度无人驾驶车在国内首次实现城市、环路及高速道路混合路况下的全自动驾驶,如图1-1所示。百度公布的路测路线显示,百度无人驾驶车从位于北京中关村软件园的百度大厦附近出发,驶入G7京新高速公路,经五环路,抵达奥林匹克森林公园,并随后按原路线返回。百度无人驾驶车往返全程均实现自动驾驶,并实现了多次跟车减速、变道、超车、上下匝道、调头等复杂驾驶动作,完成了进入高速到驶出高速的不同道路场景的切换。测试时最高速度达到100千米/小时。

screenshot

  1. AlphaGo
    AlphaGo是一款围棋人工智能程序,由谷歌旗下DeepMind公司的戴密斯·哈萨比斯、大卫·席尔瓦、黄士杰与他们的团队开发。其主要工作原理是“深度学习”。

2016年3月,该程序与围棋世界冠军、职业九段选手李世石进行人机大战(如图1-2所示),并以4:1的总比分获胜;2016年末至2017年初,该程序在中国棋类网站上以“大师”(Master)为注册账号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩。不少职业围棋手认为,AlphaGo的棋力已经达到甚至超过围棋职业九段水平,在世界职业围棋排名中,其等级分曾经超过排名人类第一的棋手柯洁。

screenshot

就在AlphaGo与柯洁“人机大战”不久前,谷歌I/O 2017大会上,谷歌“移动为先”向“AI优先”再次升级,其中最典型的表现之一就是更新和升级了去年I/O 2017大会上公布的TPU(Tensor Processing Unit)——一款谷歌自己高度定制化的AI(针对AI算法,例如其自己开发的TensorFlow深度学习架构)芯片,也是AlphaGo背后的功臣,即AlphaGo能以超人的熟练度下围棋都要靠训练神经网络来完成,而这又需要计算能力(硬件越强大,得到的结果越快)。TPU比当前的GPU或CPU平均快15~30倍,性能功耗比(TOPS/Watt)高出约30~80倍。此外,在TPU中采用GPU常用的GDDR5存储器能使性能TPOS指标再高3倍,并将能效比指标TOPS/Watt提高到GPU的70倍,CPU的200倍。到目前为止,谷歌的TPU已经应用在各种领域的应用中,例如谷歌图像搜索(Google Image Search)、谷歌照片(Google Photo)、谷歌云视觉API(Google Cloud Vision API)、谷歌翻译以及AlphaGo的围棋系统中。实际上我们上述提到的谷歌I/O 2017大会推出和更新的诸多AI产品和服务背后均有TPU的硬件支持。

相关文章
|
24天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
61 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
12天前
|
缓存 安全 搜索推荐
阿里云先知安全沙龙(北京站) ——浅谈Web快速打点
信息收集是网络安全中的重要环节,常用工具如Hunter、Fofa和扫描工具可帮助全面了解目标系统的网络结构与潜在漏洞。遇到默认Nginx或Tomcat 404页面时,可通过扫路径、域名模糊测试、搜索引擎缓存等手段获取更多信息。AllIN工具(GitHub: P1-Team/AllIN)能高效扫描网站路径,发现敏感信息。漏洞利用则需充分准备,以应对突发情况,确保快速拿下目标站点。 简介:信息收集与漏洞利用是网络安全的两大关键步骤。通过多种工具和技术手段,安全人员可以全面了解目标系统,发现潜在漏洞,并制定有效的防御和攻击策略。
|
1月前
|
Java 开发者 微服务
Spring Boot 入门:简化 Java Web 开发的强大工具
Spring Boot 是一个开源的 Java 基础框架,用于创建独立、生产级别的基于Spring框架的应用程序。它旨在简化Spring应用的初始搭建以及开发过程。
61 6
Spring Boot 入门:简化 Java Web 开发的强大工具
|
21天前
|
安全 应用服务中间件 网络安全
实战经验分享:利用免费SSL证书构建安全可靠的Web应用
本文分享了利用免费SSL证书构建安全Web应用的实战经验,涵盖选择合适的证书颁发机构、申请与获取证书、配置Web服务器、优化安全性及实际案例。帮助开发者提升应用安全性,增强用户信任。
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
46 2
|
2月前
|
SQL 负载均衡 安全
安全至上:Web应用防火墙技术深度剖析与实战
【10月更文挑战第29天】在数字化时代,Web应用防火墙(WAF)成为保护Web应用免受攻击的关键技术。本文深入解析WAF的工作原理和核心组件,如Envoy和Coraza,并提供实战指南,涵盖动态加载规则、集成威胁情报、高可用性配置等内容,帮助开发者和安全专家构建更安全的Web环境。
82 1
|
2月前
|
安全 前端开发 Java
Web安全进阶:XSS与CSRF攻击防御策略深度解析
【10月更文挑战第26天】Web安全是现代软件开发的重要领域,本文深入探讨了XSS和CSRF两种常见攻击的原理及防御策略。针对XSS,介绍了输入验证与转义、使用CSP、WAF、HTTP-only Cookie和代码审查等方法。对于CSRF,提出了启用CSRF保护、设置CSRF Token、使用HTTPS、二次验证和用户教育等措施。通过这些策略,开发者可以构建更安全的Web应用。
107 4
|
2月前
|
安全 Go PHP
Web安全进阶:XSS与CSRF攻击防御策略深度解析
【10月更文挑战第27天】本文深入解析了Web安全中的XSS和CSRF攻击防御策略。针对XSS,介绍了输入验证与净化、内容安全策略(CSP)和HTTP头部安全配置;针对CSRF,提出了使用CSRF令牌、验证HTTP请求头、限制同源策略和双重提交Cookie等方法,帮助开发者有效保护网站和用户数据安全。
91 2
|
2月前
|
存储 安全 Go
Web安全基础:防范XSS与CSRF攻击的方法
【10月更文挑战第25天】Web安全是互联网应用开发中的重要环节。本文通过具体案例分析了跨站脚本攻击(XSS)和跨站请求伪造(CSRF)的原理及防范方法,包括服务器端数据过滤、使用Content Security Policy (CSP)、添加CSRF令牌等措施,帮助开发者构建更安全的Web应用。
118 3