《大数据分析原理与实践》——第3章 关联分析模型

简介: 本节书摘来自华章计算机《大数据分析原理与实践》一书中的第3章,作者 王宏志,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第3章

关联分析模型

关联分析用于描述多个变量之间的关联。如果两个或多个变量之间存在一定的关联,那么其中一个变量的状态就能通过其他变量进行预测。关联分析的输入是数据集合,输出是数据集合中全部或者某些元素之间的关联关系。例如,房屋的位置和房价之间的关联关系或者气温和空调销量之间的关系。

关联分析主要包括如下分析内容:

(1)回归分析
回归分析是最灵活最常用的统计分析方法之一,它用于分析变量之间的数量变化规律,即一个因变量与一个或多个自变量之间的关系。特别适用于定量地描述和解释变量之间相互关系或者估测或预测因变量的值。例如,回归分析可以用于发现个人收入和性别、年龄、受教育程度、工作年限的关系,基于数据库中现有的个人收入、性别、年龄、受教育程度和工作年限构造回归模型,基于该模型可以根据输入的性别、年龄、受教育程度和工作年限预测个人收入。

(2)关联规则分析
关联规则分析用于发现存在于大量数据集中的关联性或相关性,从而描述了一个事物中某些属性同时出现的规律和模式。关联规则分析的一个典型例子是购物篮分析。该过程通过发现顾客放入其购物篮中的不同商品之间的联系,分析顾客的购买习惯。通过了解哪些商品频繁地被顾客同时购买,这种关联的发现可以帮助零售商制定营销策略。其他的应用还包括价目表设计、商品促销、商品的排放和基于购买模式的顾客划分。

(3)相关分析
相关分析是对总体中确实具有联系的指标进行分析。它是描述客观事物相互间关系的密切程度并用适当的统计指标表示出来的过程。例如,在经济学中,如果一段时期内出生率随经济水平上升而上升,这说明两指标间是正相关关系;而在另一时期,随着经济水平进一步发展,出现出生率下降的现象,两指标间就是负相关关系。

相关分析与回归分析在实际应用中有密切关系。然而在回归分析中,所关心的是一个随机变量Y对另一个(或一组)随机变量X的依赖关系的函数形式。而在相关分析中,所讨论的变量的地位一样,分析侧重于变量之间的种种相关特征。例如,以X、Y分别记为高中学生的数学与物理成绩,相关分析感兴趣的是二者的关系如何,而不在于由X去预测Y。

目录
打赏
0
0
0
0
1408
分享
相关文章
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
131 0
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
82 9
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
367 15
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
302 4

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等