《计算机视觉:模型、学习和推理》一第3章 总结

简介: 本节书摘来华章计算机《计算机视觉:模型、学习和推理》一书中的第3章 , [英]西蒙J. D. 普林斯(Simon J. D. Prince)著苗启广 刘凯 孔韦韦 许鹏飞 译 译更多章节内容可以访问云栖社区“华章计算机”公众号查看。

总结

使用概率分布可以描述全局状态和图像数据。为此已经给出了四个分布(伯努利分布、分类分布、一元正态分布、多元正态分布)。还给出了另外四个分布(贝塔分布、狄利克雷分布、正态逆伽马分布、正态逆维希特分布),可以用于描述上一组分布的参数的概率分布,因此它们可以描述拟合模型的不确定性。这4对分布有特殊关系:第二组中的每个分布是对应的第一组的共轭。正如我们看到的,共轭关系可以更容易地拟合观测数据并在拟合分布模型下评估新的数据。
备注
本书用较为深奥的术语来介绍离散分布,区分二项分布(在N次二值试验中获得M次成功的概率)和伯努利分布(在二值试验中或一次实验中获得成功或失败的概率),并专门谈论后者。本书采取类似的方法介绍离散变量,它可以有K个值。多项分布表征分在N次试验中频率为{M1,M2,…,MK}的值{1,2,…,K}出现的概率。当N=1时就是特殊的分类分布。大多数其他作者不做这种区分,并会称这种为“多项”。
附录B中Bishop(2006)更完整地介绍了常见的概率分布及其性质。关于共轭的更多信息可查看Bishop(2006)第2章或有关贝叶斯方法的其他书籍,比如Gelman等(2004)。关于正态分布更多信息参见本书第5章。
习题
3.1 已知变量x服从参数为λ的伯努利分布。证明:E[x]=λ;E[(x-E[x])2]=λ(1-λ)。
3.2 请给出用参数α和β表示贝塔分布(α,β>1)的模(峰值位置)的表达式。
3.3 贝塔分布的均值和方差由如下表达式给出E
2017_09_19_132855
不妨选择参数α和β,使分布有一个特殊的均值μ和方差σ2。根据μ和σ2推导出α和β的合适表达式。
3.4 本章所有的分布都是指数族的成员,可以写成下形式
2017_09_19_132957
这里,a[x]和c[x]是数据的函数,b[θ]和d[θ]是参数的函数。求函数a[x],b[θ],c[x]和d[θ],使贝塔分布能够表示为指数族的广义形式。
3.5 使用分部积分法来证明,如果
2017_09_19_133120
那么
2017_09_19_133214
3.6 考虑一簇方差为1的正态分布,即
2017_09_19_133254
证明它与一个参数为μ的正态分布
2017_09_19_133407
是共轭的。
3.7 对于正态分布,求函数a[x]、b[θ]、c[x]和d[θ],使它可以表示为指数族的广义形式(见习题3.4)。
3.8 设参数为α、β、γ、δ,试求正态逆伽马分布的模(μ,σ2空间的峰值位置)的表达式。
3.9 证明更为一般的共轭关系:I个伯努利分布的积与其共轭贝塔分布相乘的关系如下
2017_09_19_133514
其中
2017_09_19_133705
3.10 证明共轭关系
2017_09_19_133804
其中
2017_09_19_133843
Nk是变量取k的总次数。
3.11 证明正态分布和正态逆伽马分布之间的共轭关系为
2017_09_19_133938
3.12 证明多元正态分布和正态逆维希特分布之间的共轭关系为
2017_09_19_134037
其中
2017_09_19_134055
可能需要用到这个关系式:
2017_09_19_134110

相关文章
|
6月前
|
机器学习/深度学习 存储 数据库
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
87 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
2月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
浅谈计算机视觉新手的学习路径
浅谈计算机视觉新手的学习路径
19 0
|
2月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
6月前
|
机器学习/深度学习 Ubuntu Linux
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
4月前
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
203 11
|
5月前
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
142 8
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
【7月更文挑战第2天】计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。AlexNet开启新时代,后续模型不断优化,推动对象检测、语义分割、图像生成等领域发展。尽管面临数据隐私、模型解释性等挑战,深度学习已广泛应用于安防、医疗、零售和农业,预示着更智能、高效的未来,同时也强调了技术创新、伦理考量的重要性。
64 1
|
6月前
|
编解码 边缘计算 自然语言处理
2024年5月计算机视觉论文推荐:包括扩散模型、视觉语言模型、图像编辑和生成、视频处理和生成以及图像识别等各个主题
五月发布的计算机视觉领域重要论文涵盖了扩散模型、视觉语言模型、图像生成与编辑及目标检测。亮点包括:1) Dual3D提出双模式推理策略,实现高效文本到3D图像生成;2) CAT3D利用多视图扩散模型创建3D场景,仅需少量图像;3) Hunyuan-DiT是多分辨率的中文理解扩散Transformer,可用于多模态对话和图像生成;4) 通过潜在扩散模型从EEG数据重建自然主义音乐,展示复杂音频重建潜力。此外,还有关于视觉语言模型和图像编辑的创新工作,如BlobGEN用于合成具有控制性的图像。
246 3

热门文章

最新文章

下一篇
无影云桌面