Nvidia将推出虚拟GPU监视和分析软件

简介:

 图形处理器公司Nvidia一直致力于高性能计算、 企业服务器和虚拟桌面系统。据悉,Nvidia 将推出一款监控软件,该监控软件可以更好地跟踪Nvidia虚拟图形处理环境的使用和优化情况。

根据 Nvidia介绍,新版GRID将于8 月 26 日推出。新版含图形虚拟化跟踪分析系统,名为GRID监测。 

Nvidia 将推出虚拟 GPU 监视和分析软件

到目前为止,与物理基础架构相比,GPU虚拟环境的跟踪一直都颇为困难。GRID监测则可以跟踪企业和集群里虚拟 GPU类型、 性能和使用。

 GRID监控包括:

• 查询虚拟 GPU的发现工具。

• 各种属性的洞察,如名称、支持的显示、最大分辨率、帧缓冲区状态和许可证状态。

• 三维跟踪引擎、编码和解码的使用报告。

GRID监控软件可借助 VMware 和 Citrix 等公司的虚拟化和管理控制台及自定义应用程序与本机监控工具一起使用。


原文发布时间为: 2016年8月25日

本文作者:刘新萍 

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
8月前
|
人工智能 Linux iOS开发
exo:22.1K Star!一个能让任何人利用日常设备构建AI集群的强大工具,组成一个虚拟GPU在多台设备上并行运行模型
exo 是一款由 exo labs 维护的开源项目,能够让你利用家中的日常设备(如 iPhone、iPad、Android、Mac 和 Linux)构建强大的 AI 集群,支持多种大模型和分布式推理。
1866 100
|
5月前
|
Kubernetes 调度 异构计算
一文搞懂 GPU 共享方案: NVIDIA Time Slicing
本文主要分享 GPU 共享方案,包括如何安装、配置以及使用,最后通过分析源码了 TImeSlicing 的具体实现。通过配置 TImeSlicing 可以实现 Pod 共享一块物理 GPU,以提升资源利用率。
222 11
|
7月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
544 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU服务器租用费用_NVIDIA A10、V100、T4、P4、P100 GPU卡
阿里云GPU云服务器提供NVIDIA A10、V100、T4、P4、P100等多种GPU卡,结合高性能CPU,单实例计算性能高达5PFLOPS。支持2400万PPS及160Gbps内网带宽。实例规格多样,如A10卡GN7i(3213.99元/月)、V100-16G卡GN6v(3830.00元/月)等。适用于深度学习、科学计算、图形处理等场景。GPU软件如AIACC-Training、AIACC-Inference助力性能优化。购买方式灵活,客户案例包括深势科技、流利说、小牛翻译。
2641 0
|
Kubernetes 监控 调度
Kubernetes(K8s)与虚拟GPU(vGPU)协同:实现GPU资源的高效管理与利用
本文探讨了如何使用Kubernetes和虚拟GPU(vGPU)实现异构GPU的协同调度。Kubernetes是一个容器编排平台,通过设备插件、资源规格、调度器扩展和节点标签实现GPU资源管理。vGPU技术允许物理GPU资源在多个虚拟机或容器中共享。文章详细介绍了vGPU的部署配置步骤,并提出了GPU资源调度、负载均衡和监控调优的方法。强调虚拟GPU的性能取决于硬件和驱动支持,合理配置能提供高性能计算环境。参考文献包括Kubernetes和NVIDIA官方文档及相关研究论文。
|
XML 机器学习/深度学习 监控
性能监控之Telegraf+InfluxDB+Grafana NVIDIA GPU实时监控
【6月更文挑战12天】性能监控之Telegraf+InfluxDB+Grafana NVIDIA GPU实时监控
515 0
|
弹性计算 并行计算 UED
GPU实例使用--自动安装NVIDIA GPU驱动和CUDA组件
GPU 云服务器正常工作需提前安装正确的基础设施软件,对于搭载了 NVIDIA 系列 GPU卡的实例而言,如果把 NVIDIA GPU 用作通用计算,则需安装 NVIDIA GPU 驱动、 CUDA、cuDNN等软件。
102324 3
|
弹性计算 并行计算 UED
带你读《弹性计算技术指导及场景应用》——4. 自动安装NVIDIA GPU驱动和CUDA组件
带你读《弹性计算技术指导及场景应用》——4. 自动安装NVIDIA GPU驱动和CUDA组件
291 0
|
并行计算 Linux 计算机视觉
DeepFace【部署 04】轻量级人脸识别和面部属性分析框架deepface使用Docker部署CPU+GPU两个版本及cuDNN安装
DeepFace【部署 04】轻量级人脸识别和面部属性分析框架deepface使用Docker部署CPU+GPU两个版本及cuDNN安装
973 0
|
5月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
992 61

热门文章

最新文章