《构建实时机器学习系统》一3.3 利用 Pandas 分析实时股票报价数据

简介: 本节书摘来自华章出版社《构建实时机器学习系统》一 书中的第3章,第3.3节,作者:彭河森 汪涵,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.3 利用 Pandas 分析实时股票报价数据

熟悉一项软件的最好方法就是通过示例来亲自使用它。这里将会通过分析苹果公司 2015 年 8 月 3 日秒级股票价格的数据来熟悉 Pandas 的用法。建议通过Python 笔记本或交互式窗口的方法来进行下面的操作。
首先,需要导入相关的模块,在导入Pandas模块的同时,我们还用到了Datetime模块。Datetime模块的主要功能是对时间、日期等数据进行处理,导入命令如下:

import pandas as pd
from datetime import datetime

3.3.1 外部数据导入

这里将会导入 2015 年 8 月 3 日苹果公司的秒级股票交易数据,不过,相应的原始数据需要稍做清理才能使用,而这正好符合本章的学习要点。
首先,用Pandas 的read_csv 模块直接从 csv 文件中导入数据。原始数据一共有六列,分别存有原始时间戳、每秒开盘价、最高价、最低价、收盘价和成交量信息。可以通过names 参数将这些名字赋给处理好的数据,导入命令如下:

data = pd.read_csv("aapl.csv",
                   names = ["timestamp_raw","Open","High",
                            "Low","Close","Volume"], 
                   index_col = False)
print(type(data))

上面的type(data)可以打印出当前数据对象的类。可以看到,这里data 对象的类名为DataFrame,是 Pandas 中最基本的数据形态。
导入数据之后,当然还要看看我们最感兴趣的数据长什么样,在交互窗口中打印前 5 行和后 5 行。这里需要用到DataFrame 的head 和tail 函数,命令如下:

data.head(5)
data.tail(5)

可以注意到记录中的股价数值为原始股价乘以 10000。
原始数据中的时间记录为每天距离格林威治标准时间的秒数乘以 1000,为增加可读性,需要将数据先还原。这里先将data 对象的索引变为处理后的时间标记,并调用 DataFrame.index 域,示例代码如下:

UNIX_EPOCH = datetime(1970, 1, 1, 0, 0) 
def ConvertTime(timestamp_raw, date):
    """ 该函数会将原始的时间转化为所需的datetime格式 """
    delta = datetime.utcfromtimestamp(timestamp_raw) - UNIX_EPOCH
    return date + delta

data.index = map(lambda x: ConvertTime(x, datetime(2015, 8, 3)),
                 data["timestamp_raw"]/1000)

这个时候timestamp_raw 一列将不再有用,可以删掉它。这里调用了DataFrame.drop()函数来实现该功能:

data = data.drop("timestamp_raw",1)

3.3.2 数据分析基本操作

导入数据并做初步清理之后,可以调用 DataFrame 对象的函数对其进行各种基本的修改和描述。DataFrame的很多操作都是通过调用对象的函数来进行的,具体有哪些函数呢?可以通过如下dir()命令来查看:

dir(data)

经过查看可以得知,大多数的常用函数都已经包含在内了,如 mean(均值)、max(最大值)、min(最小值)。例如,为了求得该数据集每一列的均值,我们可以进行如下操作,求最大值、最小值的操作也与此类似:

data.mean()

同时还可以调用 describe 函数直接产生常用的描述性统计量,命令如下:

data.describe()

我们进行数据分析时,往往需要对数据的假设进行检验。例如美股交易时间是从美国东部时间的早上 9:30 到下午 3:30,但是很多主流股票还具有盘前和盘后交易。盘前和盘后交易时间中估价波动较大,成交量较小,对此本书不进行研讨。在进行其他分析之前,我们需要检视一下所有数据记录的时间范围。上面的统计量操作也可以在 data.index 上执行。这里DataFrame.index 相当于一个 Series 对象,命令如下:

data.index.min()
data.index.max()

可以看到,交易时间其实包括了盘前和盘后的大量时间。在实际交易策略中,我们往往只会在正常交易时间进行交易,所以需要对数据按照时间进行拆分,只保留正常交易时间的数据,完成该项操作非常容易,命令如下:

data_trading_hour = data["201508030930":"201508031529"]

3.3.3 可视化操作

进行了简单的数据清理之后,就可以开始进行可视化操作了,首先通过目测的方式来查看数据的分布。Pandas 进行可视化操作需要依赖于 Matplolib 模块,这里首先导入对应的模块,导入命令如下:

import matplotlib
from matplotlib import pyplot as plt

Matplotlib 自带的画图风格比较僵硬,需要改改,同时为了向 R 致敬,这里设置画图风格为 R ggplot 风,设置命令如下:

matplotlib.style.use('ggplot')

画图查看每一秒的收盘价。这里只需要对 Series 类的变量调用plot 函数,即可得到
图3-1所示的股价走势图,调用命令如下:

data_trading_hour["Close"].plot()
plt.show()

screenshot

同时,也有人可能对成交量感兴趣。根据格兰杰因果检验等研究,成交量对股价变化也有影响。每秒成交量是什么样的分布?可以通过下面的命令做出直方图。只需要调用 Series 类对象的plot.hist 函数即可:

data_trading_hour["Volume"].plot.hist() 
plt.show()

直方图画出来之后,读者将会发现大多数观测集中在了较小的范围之内,但是有若干秒的交易量是其他时候的数倍。为了更深入地研究,可以画出时序图做进一步的观察,画时序图的命令如下,得到的图形如图3-2所示。

screenshot

data_trading_hour["Volume"].describe() 
data_trading_hour["Volume"].plot() 
plt.show()

果然正如我们所假设的,中午时分有大单交易发生。

3.3.4 秒级收盘价变化率初探

当然,对于实时量化交易,我们最感兴趣的还是每秒的变化率。那么下面我们就来看看股价变化的分布情况。为了到相邻时间点股价的变化率,我们可以通过调用diff 函数来实现,得到的变化率序列也是一个 Series 类对象。就如3.3.3节一样,我们可以将变化率可视化,得到图3-3。调用diff 函数的命令如下:

data_trading_hour["Close"].diff().plot.hist() 
plt.show()

change = data_trading_hour["Close"].diff()/data_trading_hour["Close"] 
change.plot() 
plt.show()

screenshot

现在回到出发点,我们分析和可视化数据是为了在后文中发掘出可能的量化交易策略。我们常常听说股价会追涨杀跌,在这种模式中的股价会按照趋势继续上涨或下跌。我们也听说过可能会均值反转,在这种模式中的股价会在具有了大幅波动之后回归平均值。那么,秒级数据又有什么样的趋势模式呢?可以通过shift 函数对时间序列进行错位,并且通过corr 函数计算两个时间序列之间的相关性系数。绝对值较大的相关性系数代表前后时间中股价变化的相关程度较高;绝对值近乎为 0则代表前后时间中股票变化相关线性程度低。shift 函数命令如下:

change.shift(1).corr(change) 
change.shift(2).corr(change)

通过图3-4可以看到,前后一秒股价变化率的相关性系数为 -0.167,这样的相关性对于金融数据来说已经非常显著了。但是这一相关性在两秒的间隔之后迅速衰减到了-0.034,所以这就要求我们的实时交易策略系统必须具有非常低的延迟,才能抓住这样的先机,得到超额的收益。
其实,在时间序列研究中,已经有了一套比较完备的描述性统计量,自相关性(auto-correlation)就是这样一个例子。MatplotLib 的 acorr 函数可以自动对时间序列做出自相关图,acorr 函数的命令如下:

plt.acorr(change[1:], lw = 2) 
plt.show()

screenshot

图3-4所示为AAPL 股价变化率自相关系数柱状图,其横轴的每个刻度均代表时间序列的错位大小,1 表示时间序列与错位 1 秒的自身进行相关性计算;2表示时间序列与错位 2 秒的自身进行相关性计算。以此类推。该图纵轴代表计算的相关性系数大小。在错位为 0 时,时间序列和自身完美相关,这里的相关性系数为 1。
从图3-4可以看出,苹果公司当天股价变化率的自相关性随着时间错位的增加而递减。前一秒股价变化率和后一秒股价呈负相关关系,这暗示我们在短期股票交易中,股价变化具有均值回归的模式。在均值回归模式中,如果股票出现大幅上涨或下跌,那么在后面的短时间内,可能会出现反向的股价波动,以减弱前期的变化。

相关文章
|
18天前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型的五大技巧
【4月更文挑战第7天】 在数据科学迅猛发展的今天,机器学习已成为解决复杂问题的重要工具。然而,构建一个既精确又高效的机器学习模型并非易事。本文将分享五种提升机器学习模型性能的有效技巧,包括数据预处理、特征工程、模型选择、超参数调优以及交叉验证。这些方法不仅能帮助初学者快速提高模型准确度,也为经验丰富的数据科学家提供了进一步提升模型性能的思路。
|
25天前
|
机器学习/深度学习 搜索推荐 算法
基于机器学习的用户行为分析与个性化推荐系统
传统的用户行为分析和推荐系统常常受限于规则的刻板和模型的简单,无法准确捕捉用户的个性化需求。本文基于机器学习技术,探讨了一种更加灵活、精准的用户行为分析与个性化推荐系统设计方法,通过深度学习模型结合大数据分析,实现了对用户行为的更细致把握和更个性化的推荐服务。
|
23天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的最佳实践
【4月更文挑战第3天】在数据驱动的时代,构建高效的机器学习模型已成为解决复杂问题的关键。本文将探讨一系列实用的技术策略,旨在提高模型的性能和泛化能力。我们将从数据预处理、特征工程、模型选择、超参数调优到集成学习等方面进行详细讨论,并通过实例分析展示如何在实践中应用这些策略。
17 1
|
3天前
|
机器学习/深度学习 算法 数据挖掘
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
24 1
|
2天前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型的最佳实践
【4月更文挑战第23天】在数据驱动的时代,机器学习已成为创新的核心动力。本文深入探讨了构建高效机器学习模型的关键步骤,包括数据预处理、特征工程、模型选择、训练技巧以及性能评估。通过实例分析与经验总结,旨在为从业者提供一套实用的技术指南,帮助他们在复杂数据环境中提升模型的准确性和泛化能力。
|
8天前
|
机器学习/深度学习 算法 数据处理
构建自定义机器学习模型:Scikit-learn的高级应用
【4月更文挑战第17天】本文探讨了如何利用Scikit-learn构建自定义机器学习模型,包括创建自定义估计器、使用管道集成数据处理和模型、深化特征工程以及调优与评估模型。通过继承`BaseEstimator`和相关Mixin类,用户可实现自定义算法。管道允许串联多个步骤,而特征工程涉及多项式特征和自定义变换。模型调优可借助交叉验证和参数搜索工具。掌握这些高级技巧能提升机器学习项目的效果和效率。
|
9天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从特征工程到模型调优
【4月更文挑战第16天】 在数据驱动的时代,机器学习已成为解决复杂问题的关键工具。本文旨在分享一套实用的技术流程,帮助读者构建高效的机器学习模型。我们将重点讨论特征工程的重要性、选择合适算法的策略,以及通过交叉验证和网格搜索进行模型调优的方法。文章的目标是为初学者提供一个清晰的指南,同时为有经验的实践者提供一些高级技巧。
|
10天前
|
机器学习/深度学习 人工智能 分布式计算
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
15 0
|
20天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【4月更文挑战第6天】本文聚焦于机器学习模型的开发流程,旨在提供一套系统的方法论以构建出更高效的模型。我们将深入探讨数据预处理的重要性,特征工程的策略,以及如何通过交叉验证和超参数调优来提升模型性能。文章不仅涉及理论分析,还包括了实际案例的代码实现,为读者呈现一个从数据处理到模型部署的完整蓝图。
14 0
|
21天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【4月更文挑战第5天】 在机器学习领域,构建一个高效的模型并非易事。它涉及多个阶段,包括数据预处理、特征工程、模型选择、训练以及最终的评估和优化。本文深入探讨了如何通过精确的数据预处理技巧和细致的特征工程来提升模型性能,同时介绍了几种常见的模型优化策略。我们的目标是为读者提供一套实用的指导方案,帮助他们在面对复杂数据集时能够有效地构建和调整机器学习模型。

热门文章

最新文章