《构建实时机器学习系统》一第3章 数据分析工具 Pandas 3.1 颠覆 R 的 Pandas

简介: 本节书摘来自华章出版社《构建实时机器学习系统》一 书中的第3章,第3.1节,作者:彭河森 汪涵,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第3章

数据分析工具 Pandas

3.1 颠覆 R 的 Pandas

进行机器学习应用的第一步是理解和探索数据,为此我们需要一套交互性很强的软件。一款理想的数据分析软件可以轻松地从多个来源读取数据、进行预处理,并且还要具有优良的统计和可视化功能,Pandas 就是这样一款软件。
Pandas 是一款基于 Python 的数据分析和建模的开源软件包。2012 年两位笔者刚刚在亚马逊相识的时候,如日中天的 R工具正是机器学习和数据分析的主流,而基于Python 的数据分析工具 Pandas 正在默默无闻地发展壮大。到2016 年本书写作之时,Pandas 已经完全取代了 R,成为了主流业务中数据分析的必备软件。这样的成功与Pandas 的设计是密不可分的。这其中有以下两个方面的原因。
取材于 R,超越 R:Pandas 里处处都有R 的影子。首先,Pandas 中数据的基本单位是 DataFrame。DataFrame 的基本概念来自于 R,其代表的是一个包含数据的基本单位。DataFrame 中的每一行代表一个观测,每一列代表一个变量,其中变量可以是数值、文本等多种类型,这样的数据结构大大方便了机器学习的准备工作。
优秀的生态对接:Pandas 具有优秀的对接接口,在与文本文件、HDFS、SQL等进行读写操作时非常方便。在可视化方面,Pandas 与 MatplotLib 可以说是整合得天衣无缝。最让人称道的是,为了向 R 致敬,Pandas 加入了一项参数,从而可以完全按照 R 的 ggplot 风格进行绘图,另外,Pandas 的底层数据结构也依赖于Python 生态中主流的 Numpy Array,可以非常方便地调用 numpy、scipy 中已有的模块。
本章将介绍Pandas 的基本操作。这里主要是利用Pandas 进行初步数据清理和研究工作,我们也会对数据可视化进行初步介绍。但是对于自动化可视化呈现的工作,现今市面上已经有了更为强大的 ELK(Elasticsearch、Logstash、Kibana)集群,该集群将在第9章详细介绍。

相关文章
|
3月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
147 5
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
85 2
|
3月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
120 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
设计文档:智能化医疗设备数据分析与预测维护系统
本系统的目标是构建一个基于人工智能的智能化医疗设备的数据分析及预测维护平台,实现对医疗设备运行数据的实时监控、高效处理和分析,提前发现潜在问题并进行预防性维修,从而降低故障率,提升医疗服务质量。
|
2月前
|
数据采集 监控 搜索推荐
用户画像构建:年度数据分析的用户视角
在数据驱动的时代,年度数据分析对企业战略规划和运营优化至关重要。本文从数据收集、预处理、分析、可视化到应用实践,全面探讨如何通过年度数据分析实现业务增长,助力企业精准决策。通过构建全面的数据源体系、清洗整合数据、洞察趋势、发现机会,并借助数据可视化工具,最终将数据转化为实际行动,持续优化企业运营。
|
2月前
|
DataWorks 数据挖掘 大数据
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
|
3月前
|
数据处理 Python
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具。本文通过问题解答形式,深入探讨Pandas与NumPy的高级操作技巧,如复杂数据筛选、分组聚合、数组优化及协同工作,结合实战演练,助你提升数据处理能力和工作效率。
64 5
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
76 2
|
3月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
89 2
|
3月前
|
SQL 存储 数据挖掘
快速入门:利用AnalyticDB构建实时数据分析平台
【10月更文挑战第22天】在大数据时代,实时数据分析成为了企业和开发者们关注的焦点。传统的数据仓库和分析工具往往无法满足实时性要求,而AnalyticDB(ADB)作为阿里巴巴推出的一款实时数据仓库服务,凭借其强大的实时处理能力和易用性,成为了众多企业的首选。作为一名数据分析师,我将在本文中分享如何快速入门AnalyticDB,帮助初学者在短时间内掌握使用AnalyticDB进行简单数据分析的能力。
106 2