大数据的核心是用数据找机会

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

现在,大数据的概念正处于纷杂的时代,媒体上充斥了各种关于大数据的报道,但其中不乏牵强附会、滥竽充数的言论,某些媒体甚至把简单的统计也冠上了“大数据”的头衔。

但大数据最大的不同在于,其最核心的特质是“用数据找机会”,而在以前,却是有问题找数据。做大数据,必须要有一个预判,就是哪些数据是你必须要提炼出来解决盲点的。

其实,早在15年前,我认识的一些朋友就已经开始展现“大数据”的魅力了。90 年代初,我认识了一些专业以博彩为生的朋友,这些人组成了一个团队,每年通过赛马,就能盈利数亿港元。我非常惊讶,要知道很多人在赌马场上可是血本无归的,而他们却能把这种概率游戏变成稳定的盈利工具。原来,他们的秘密就是使用了一套“养数据”策略——将每一场赛马比赛的过程都录了下来。当时我觉得这个做法很奇怪:“电视上已经在播放录决战大数据像了啊,还另外录比赛干什么?”

后来我得知,他们居然在每场比赛中都会录取赛马不同角度的录像。通过这些录像,他们分析出骑师、马匹有哪些失误动作,这些动作会带来怎样的后果,然后再把这些数据“清洗”出一个更准确的数据(Smart Data)。令我最为震惊的是,他们竟然不看表面数据,而是从无限数据的机会中寻找核心数据。

赛马过程中有许多意外,他们利用数据来还原——如果在没有意外发生的情况下,马匹在不同场地与不同骑师配合中的应有速度。就这样,他们可以更准确地判断出每匹马的实力和获胜的机会;就这样,通过默默无闻的数据收集,入账数亿元。

这是我见过的,最早的使用大数据进行商业上决策的行为。作为一个跟数据打了十几年交道的人,我深深地知道从“看”到“用”,再从“用”到“养”的运营数据,本身就是一个复杂的过程。大数据的数据量绝对不是一个最重要的问题,我们要的不是数据的量,而是有“质”的量,也就是实效的数据。

我们需要拥有一套具有商业敏感的数据决策框架,可以使企业“看”得更准,并能够对近期做了什么是对的、什么是错的进行判断。其次,让数据真正从“看”到“用”,让用数据成为构建企业生产力的重要部分。再次,让Data Technology(DT 战略)深入到企业的每个角落,使数据从生产、收集、使用、分享、反馈变得简单易用。最后,让DT 战略落地还要特别注意数据的稳定、准确、时效和有效实施。

在这个风云变幻的数据时代,只有让数据成为商业的利器才能决胜千里。

原文发布时间为:2014年04月14日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
8天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
67 7
|
8天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
23 2
|
21天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
65 1
|
5天前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
14 4
|
15天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
37 3
|
15天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
49 2
|
18天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
61 2
|
20天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
54 2
|
22天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
26天前
|
SQL 存储 大数据
大数据中数据提取
【10月更文挑战第19天】
52 2
下一篇
无影云桌面