大数据云安全策略四大窍门

本文涉及的产品
Web应用防火墙 3.0,每月20元额度 3个月
云安全中心 防病毒版,最高20核 3个月
云安全中心 免费版,不限时长
简介:

ZDNet至顶网服务器频道 04月18日 新闻消息:云计算与大数据的结合可以说是天作之合。大数据需要灵活的计算环境,而后者可以快速、自动地进行扩展以支持海量数据。基础设施云可以精准地提供这些需求。但是无论什么时候对云计算展开讨论,我们都无法回避以下问题:

大数据云安全策略四大窍门

针对大数据的云安全策略是什么?

当在大数据使用案例中提及云安全策略时,我们希望任何安全解决方案都能够在不影响部署安全性的情况下提供与云一样的灵活性。在将大数据转移至云上时,以下四个小贴士可以让用户既能享受到云计算的灵活性又能获得严格的云安全策略。

1、将敏感数据加密(强烈推荐)

数据加密将会为你的云基础设施建起一堵“虚拟的墙”。部署云加密措施被认为是首要步骤,但是它们并不适合所有的解决方案。一些加密解决方案需要本地网关加密,这种方案在云大数据环境下无法很好的工作。还有一些解决方案(例如,由云服务提供商对数据进行加密)会迫使终端用户信任那些拥有密钥的人,而这些本身就蕴藏着危险和弱点。

近期的一些加密技术,如分裂密钥加密,都非常适合云计算。用户在享受基础设施云解决方案提供的优势的同时又可以将密钥保存在自己手中,让密钥处于安全状态下。为了能够让你的大数据环境获得最佳的加密解决方案,建议使用分裂密钥加密。

2、寻找在结构上能够扩展的云安全解决方案

在大数据当中,结构的每一个组件都应该能够扩展,云安全解决方案也不例外。在选择云安全解决方案时,用户需要确保它们在所有跨地区云部署点中都能够发挥作用。此外,它们在大数据基础设施当中必须要能够高效地扩展。表面上,这并不涉及硬件问题。但是由于硬件安全模块(HSM)不具扩展能力并且无法灵活适应云模式,因此它们不适合大数据使用案例。

为了获得必要的扩展性,建议使用专门针对云计算设计的云安全解决方案,它们的安全性可以等效(甚至是超过)基于硬件的解决方案。

3、实现最大程度的自动化

云安全架构无法轻易扩展这一因素导致大数据云计算机的研发受挫。传统加密解决方案需要HSM(硬件)单元。勿庸置疑,硬件部署无法实现自动化。

为了让云安全策略尽可能地实现自动化,用户应当选择虚拟工具解决方案,而不是硬件解决方案。用户需要明白可用的API(最好是闲置的API)也是云安全解决方案的一部分。虚拟工具加上闲置的API能够在云大数据使用案例中提供所需要的灵活性和自动化。

4、对数据安全永不妥协

虽然云安全通常十分复杂,但是用户在大数据部署当中还是会发现一些“安全捷径”。这些“安全捷径”通常貌似能够回避一些复杂设置,同时保持大数据结构“不受伤害”。

一些客户可能会使用免费的加密工具,并将密钥存储在硬盘(这种做法非常不安全,可能会导致加密数据被暴露在任何有访问虚拟硬盘权限的人面前),有些客户甚至不采取加密措施。这些捷径肯定并不复杂,但是很明显,它们并不安全。

在涉及大数据安全性时,用户应当根据数据的敏感程度进行分类,然后对它们采取相应的保护措施。在一些案例当中,结果往往是戏剧性的。并不是所有的大数据基础设施是安全的,如果处于风险当中的数据非常敏感或是属于管制数据,那么用户可能需要寻找替代方案。

总结

只有为数据建立了最为严格的安全标准,大数据才能够不断地享受着由云计算提供的可扩展性、灵活性和自动化。加密被认为是保护云(大)数据的首要步骤。分裂密钥加密和同态密钥管理等新技术应当投入到保护敏感数据当中,同时用户还需要严格遵守HIPAA、PCI等规章制度。

原文发布时间为:2014年04月18日 
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
7月前
|
存储 大数据 API
大数据隐私保护策略:加密、脱敏与访问控制实践
【4月更文挑战第9天】本文探讨了大数据隐私保护的三大策略:数据加密、数据脱敏和访问控制。数据加密通过加密技术保护静态和传输中的数据,密钥管理确保密钥安全;数据脱敏通过替换、遮蔽和泛化方法降低敏感信息的敏感度;访问控制则通过用户身份验证和权限设置限制数据访问。示例代码展示了数据库、文件系统和API访问控制的实施方式,强调了在实际应用中需结合业务场景和平台特性定制部署。
2003 0
|
27天前
|
分布式计算 运维 API
针对MaxCompute经典网络域名下线,Dataphin应对策略的公告
针对MaxCompute经典网络域名下线,Dataphin应对策略的公告
236 7
|
1月前
|
存储 大数据 数据处理
大数据环境下的性能优化策略
大数据环境下的性能优化策略
51 2
|
6月前
|
数据采集 监控 大数据
大数据时代的数据质量与数据治理策略
在大数据时代,高质量数据对驱动企业决策和创新至关重要。然而,数据量的爆炸式增长带来了数据质量挑战,如准确性、完整性和时效性问题。本文探讨了数据质量的定义、重要性及评估方法,并提出数据治理策略,包括建立治理体系、数据质量管理流程和生命周期管理。通过使用Apache Nifi等工具进行数据质量监控和问题修复,结合元数据管理和数据集成工具,企业可以提升数据质量,释放数据价值。数据治理需要全员参与和持续优化,以应对数据质量挑战并推动企业发展。
1716 3
|
2月前
|
消息中间件 分布式计算 算法
大数据-67 Kafka 高级特性 分区 分配策略 Ranger、RoundRobin、Sticky、自定义分区器
大数据-67 Kafka 高级特性 分区 分配策略 Ranger、RoundRobin、Sticky、自定义分区器
57 3
|
2月前
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
83 2
|
4月前
|
存储 分布式计算 数据处理
面向业务增长的数据平台构建策略
【8月更文第13天】为了构建一个能够支持企业业务增长的数据平台,我们需要考虑几个关键的方面:数据的收集与整合(数据集成)、存储、处理和分析。本文将详细介绍这些步骤,并提供具体的代码示例来帮助理解。
169 1
|
4月前
|
云安全 人工智能 安全
2024云安全洞察报告:趋势与策略
随着数字化转型的逐步推进,云计算已成为企业IT基础设施的核心。然而,云环境的复杂性也带来了新的安全挑战。本文通过大量数据、案例和专家洞察,全面剖析2024年云上安全态势,并为企业提供切实可行的安全建议。
543 0
2024云安全洞察报告:趋势与策略
|
4月前
|
存储 分布式计算 数据处理
MaxCompute 的成本效益分析与优化策略
【8月更文第31天】随着云计算技术的发展,越来越多的企业选择将数据处理和分析任务迁移到云端。阿里云的 MaxCompute 是一款专为海量数据设计的大规模数据仓库平台,它不仅提供了强大的数据处理能力,还简化了数据管理的工作流程。然而,在享受这些便利的同时,企业也需要考虑如何有效地控制成本,确保资源得到最优利用。本文将探讨如何评估 MaxCompute 的使用成本,并提出一些优化策略以降低费用,提高资源利用率。
244 0
|
6月前
|
存储 资源调度 大数据
云计算在大数据分析中的弹性资源调度策略
云计算在大数据分析中的弹性资源调度策略