戴尔软件调查结果显示中型企业正积极实施大数据项目

简介:

ZDNet至顶网服务器频道 04月29日 新闻消息:作为一个经久不衰的炒作主题,大数据已经被视为大型企业机构的专属,而非中型企业面临的挑战或机遇。然而,戴尔软件针对中端市场大数据计划所做的调查结果却截然相反。大数据计划,曾经只是大型企业独有的优势,正在以新的分析工具不断加强IT部门领导与公司业务之间的联系,帮助中型企业机构改进产品质量和决策。

为了寻求推动中端市场采用大数据项目的原因所在,戴尔软件委托Competitive Edge Research 对全球中型企业高管进行了一次调查。着眼于中型企业机构,本次调查显示,大数据项目从根本上给企业带来了重大转变,并成为全球中型企业的一个关键决策因素。调查结果还显示,当今绝大多数的中型企业机构相信大数据项目的潜力将帮助他们解决实际业务问题,他们正在以实际行动来支持这一计划。

调查结果显示中型企业正积极实施大数据计划

本次调查最显著的结果就是:41%的受访者已经制定了一个或多个大数据项目,另外55%的受访者计划在可预见的未来启动一个大数据项目。更进一步的调查结果表明,更多中型企业机构计划利用大数据分析来发展业务,而不只是找到削减成本的方式。其它调查结果还包括:

• 80%的受访者认为,他们必须更好地分析快速扩大的数据集合。其首要目标包括:提高产品质量,抓住商机并加快决策速度。

• 89%正在执行大数据计划的受访者表示公司决策显著改进。

• 受早期成功的鼓舞,受访者预测,未来两年,随着公司投入更多资金用于硬件、软件和培训,大数据预算将从200-500万美元增至600万美元 。

• 大数据计划成功的最大驱动因素就是IT/业务部门之间的协作,以及评估大数据计划影响力的绩效管理。

• 大数据项目中最有影响力的部门就是IT和销售/营销部门。

• 执行大数据计划的中型企业机构最宝贵的技术就是实时数据处理、预测性分析和数据可视化工具。

一系列关键驱动因素推动中型企业拥抱并投资大数据计划。受访者表示,其大数据项目有三大目标,提供质量更高的产品和服务,充分利用新的商机,提高决策质量和速度。紧随其后的目标是,更好地了解客户需求,具有快速响应竞争威胁的能力,以及提升营销计划的有效性。

早期成果带来出立竿见影的影响

尽管许多中型企业才刚刚开始启动大数据计划,但是早期成果显示,这些计划将对其企业机构的生产效率和成功产生非常直接、正面的影响。根据调查显示,正在执行大数据项目的企业机构对生产力和决策的满意度比那些仍在规划阶段的企业机构要高得多。例如:

• 50%正在执行大数据计划的企业机构对其决策的质量和速度感到满意,而在还未启动大数据项目的企业中,只有23%表示满意。

• 49%正在执行大数据项目的企业机构对其提高产品质量的能力感到满意,而在还未启动大数据项目的企业中,只有32 %感到满意。

• 47%在生产中利用大数据计划的企业机构对其识别并充分利用新商机的能力感到满意,而在还未启动大数据项目的企业中,只有24%感到满意 。

关键成功因素

戴尔调查显示,作为大型企业机构大数据计划中一个众所周知,但经常被忽视的最佳实践,即IT与业务部门之间的协作是最常提到的中型市场项目成功的前提条件,41%的受访者认为,要想让大数据计划获得成功,必须在两个部门之间进行协作。其它常被提及的成功因素包括:

• 企业机构内数据分析与绩效管理之间的紧密联系——37%的受访者提及。

• 企业机构内所需技能的可用性——例如数据科学家拥有的技能——33%的受访者提及。

• 完整、准确的业务需求文档——32%的受访者提及 。

中型企业机构中已初现成功迹象,但是仍有增长空间

尽管绝大多数企业机构已经普遍看到早期成果,但是仍然有增长空间。管理数据复杂性仍然是中型企业机构所面临的最大障碍,因为他们希望充分获得数据驱动方案的潜在好处。根据调查,40%的企业机构认为管理各种数据类型和结构的需求将是一大挑战,而只有24%的企业机构将缺乏易于使用、高成本效益的数据清洗工具视为挑战 。此外,大多数中型企业机构仍然没有将社交媒体及其它大型数据资源纳入其分析工具组合,这意味着有大量分析洞察来源在很大程度上尚未得到开发。

尽管所需的大数据技术的成本和复杂性使得某些机会未被开发,但技术仍然在不断改进,大数据相关项目的预算也在增长。戴尔调查结果显示,没有任何理由表明,中型企业不受益于其对数据更好的分析,更重要的是,他们现在已经清楚的意识到这一点。 

关于此次调查

戴尔软件委托Competitive Edge Research对全球中型企业机构的300位IT决策者进行了问卷调查。受访者包括跨领域的总监、经理、副总裁或首席高管,他们担任IT和业务线的领导职务。所谓中型企业,即企业规模在2000-50000人之间。此次调查于2013年11月在美国、欧洲中东和非洲以及亚太区进行。私营和公共企业机构都接受了访问 。

原文发布时间为:2014年04月29日
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
7月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
235 4
|
7月前
|
SQL 分布式计算 大数据
别再迷信“上大数据就能飞”了!大数据项目成败的5个真相
别再迷信“上大数据就能飞”了!大数据项目成败的5个真相
163 6
|
7月前
|
JSON 分布式计算 大数据
springboot项目集成大数据第三方dolphinscheduler调度器
springboot项目集成大数据第三方dolphinscheduler调度器
428 3
|
分布式计算 大数据 Java
springboot项目集成大数据第三方dolphinscheduler调度器 执行/停止任务
springboot项目集成大数据第三方dolphinscheduler调度器 执行/停止任务
163 0
|
10月前
|
数据采集 分布式计算 数据可视化
大数据项目成功的秘诀——不只是技术,更是方法论!
大数据项目成功的秘诀——不只是技术,更是方法论!
266 8
大数据项目成功的秘诀——不只是技术,更是方法论!
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
280 3
|
分布式计算 运维 DataWorks
MaxCompute操作报错合集之用户已在DataWorks项目中,并有项目的开发和运维权限,下载数据时遇到报错,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
249 8
|
弹性计算 分布式计算 大数据
MaxCompute产品使用合集之如何将用户A从项目空间A申请的表权限需要改为用户B
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
178 6
|
监控 Java 开发者
揭秘Struts 2性能监控:选对工具与方法,让你的应用跑得更快,赢在起跑线上!
【8月更文挑战第31天】在企业级应用开发中,性能监控对系统的稳定运行至关重要。针对流行的Java EE框架Struts 2,本文探讨了性能监控的工具与方法,包括商用的JProfiler、免费的VisualVM以及Struts 2自带的性能监控插件。通过示例代码展示了如何在实际项目中实施这些监控手段,帮助开发者发现和解决性能瓶颈,确保应用在高并发、高负载环境下稳定运行。选择合适的监控工具需综合考虑项目需求、成本、易用性和可扩展性等因素。
194 0
|
SQL 大数据 分布式数据库
SQL与大数据的神秘力量:如何用高效SQL处理海量数据,让你的项目一鸣惊人?
【8月更文挑战第31天】在现代软件开发中,处理海量数据是关键挑战之一。本文探讨了SQL与大数据结合的方法,包括数据类型优化、索引优化、分区优化及分布式数据库应用,并通过示例代码展示了如何实施这些策略。通过遵循最佳实践,如了解查询模式、使用性能工具及定期维护索引,开发者可以更高效地利用SQL处理大规模数据集。随着SQL技术的发展,其在软件开发中的作用将愈发重要。
559 0