普元:解决数据质量问题是大数据应用的关键

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

研究称,整个人类文明所获得的全部数据量,有90%是最近两年内产生的。随着移动互联大潮的席卷,预计通过网路产生的数据量还将呈几何级增长。庞大的数据资源蕴藏着无限的宝藏,过去的一年无论是企业、政府还是媒体,都在谈论大数据。有人说大数据是黄金、是竞争力,然而在这一切谈论的背后却鲜有人关注数据质量这个最根本的问题。

普元数据产品总监王轩认为,大数据处理的关键就是解决数据质量问题,规避数据错误、保障数据质量才能真正让企业从大数据应用中获得利益。

保障数据质量成为大数据发挥价值的先决条件

“企业做数据集成、数据处理的核心价值我认为是两个方面,首先当然能为企业带来更多的盈利,其次是规避风险,而实现这两个核心价值的关键就是解决数据质量问题。现在大数据环境也好,传统数据环境也好,大家面临很严重的问题在哪儿?我们做了很多数据分析和挖掘,这种分析挖掘到底对不对靠什么来衡量?有的企业是基于数据分析作出了一些营销的趋势性结论,但如果你的数据本身是错的,分析出来的结论未必有用。” 普元数据产品总监王轩表示,保证数据质量是大数据为企业带来价值的先决条件。

《大数据资产:聪明的企业怎样致胜于数据治理》一书的作者 Tony Fisher 曾提到,如果基本数据不可靠,大多数企业的大数据计划要么会失败,要么效果会低于预期。造成上述结果的关键原因在于,数据生命周期之中流入了不一致、不准确、不可靠的数据。在数据领域最流行的一个说法是“更好的数据意味着更好的决策”,这句话从来不假,在当今的大数据时代甚至更为真切。

“在我们接触的众多银行案例中,经常会遇到这种情况,做完一个数据仓库,客户信息重名的上万个,一个人1000多个账户,这都是数据质量的问题。为什么会出现这种数据问题呢?数据处理是一个复杂的过程,这其中有很多环节,从前期的数据标准、数据集成到数据处理等等,任何一个环节出错都有可能导致数据质量问题。其中数据处理是清洗数据和规避数据风险的重要环节,在这个技术领域普元做得很专注,在业内也是领先的。”王轩认为除了现有数据的处理,规避实时数据风险尤为重要的,如何在交易错误时即时阻断数据错误是保障数据质量的重要手段。由此普元早就提出大数据平台产品线的概念,把所有这些环节需要的技术手段都囊括进来,这正是普元正在修炼的‘秘籍’。”

普元大数据产品家族 助力企业大数据淘金

一直以来,国内大型企业主要采用国外的数据处理软件,随着技术的扁平化,国内的数据处理软件技术越来越纯熟,价格相对于国外‘大佬’来说更具竞争力。在数据处理市场国产软件越来越受青睐,一方面原因是企业成本,一方面则是信息安全。

 “本土化的软件更适合国内企业的业务需求,自主掌握知识产权的产品对企业来说安全性更高,IT成本极大降低的同时安全性又得到了提高,企业何乐而不为。”王轩表示。

普元从2010年开始涉足大数据领域, “普元数据处理软件平台领先的技术和方法论可以从根本帮助用户解决数据质量的问题,普元的复杂事件处理平台则帮助用户实时规避数据风险,普元完备的大数据产品家族提供从咨询、数据集成、数据治理到可视化的‘一站式’服务更是解除了企业大数据应用的后顾之忧。”王轩指出普元大数据产品已具备丰富的功能。

目前普元的大数据产品家族分为四大平台,分别是智慧数据应用平台、复杂事件处理平台、数据质量平台和元数据管理平台。“普元的大数据产品线在业内是一流和领先的,这一点并非空穴来风。我们的产品在业内特别是金融行业有多年的积淀,普元的数据平台基础软件已经应用于国家开发银行、中信银行、北京银行、上海银行等国内金融行业的重点企业,普元数据线软件产品也受到用户的广泛认可。”王轩强调。

谈到普元大数据产品在未来的发展方向时,王轩表示“普元的大数据产品家族是非常丰满的,未来普元会持续加大在大数据研发方面的投入,继续完善和扩充大数据产品,以适应新技术时代企业不断变化的数据应用需求。”

原文发布时间为:2014-05-04
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
5天前
|
机器学习/深度学习 数据可视化 大数据
阿里云大数据的应用示例
阿里云大数据应用平台为企业提供高效数据处理与业务洞察工具,涵盖Quick BI、DataV及PAI等核心产品。DT203课程通过实践教学,帮助学员掌握数据可视化、报表设计及机器学习分析技能,提升数据驱动决策能力。Quick BI简化复杂数据分析,DataV打造震撼可视化大屏,PAI支持全面的数据挖掘与算法应用。课程面向CSP、ISV及数据工程师等专业人士,为期两天,结合面授与实验,助力企业加速数字化转型。完成课程后,学员将熟练使用阿里云工具进行数据处理与分析。[了解更多](https://edu.aliyun.com/training/DT203)
|
7天前
|
消息中间件 SQL 大数据
Hologres 在大数据实时处理中的应用
【9月更文第1天】随着大数据技术的发展,实时数据处理成为企业获取竞争优势的关键。传统的批处理框架虽然在处理大量历史数据时表现出色,但在应对实时数据流时却显得力不从心。阿里云的 Hologres 是一款全托管、实时的交互式分析服务,它不仅支持 SQL 查询,还能够与 Kafka、MaxCompute 等多种数据源无缝对接,非常适合于实时数据处理和分析。
28 2
|
8天前
|
存储 SQL 分布式计算
MaxCompute 在大规模数据仓库中的应用
【8月更文第31天】随着大数据时代的到来,企业面临着海量数据的存储、处理和分析挑战。传统的数据仓库解决方案在面对PB级甚至EB级的数据规模时,往往显得力不从心。阿里云的 MaxCompute(原名 ODPS)是一个专为大规模数据处理设计的服务平台,它提供了强大的数据存储和计算能力,非常适合构建和管理大型数据仓库。本文将探讨 MaxCompute 在大规模数据仓库中的应用,并展示其相对于传统数据仓库的优势。
29 0
|
12天前
|
存储 关系型数据库 大数据
PolarDB 大数据处理能力及其应用场景
【8月更文第27天】随着数据量的爆炸性增长,传统的数据库系统面临着存储和处理大规模数据集的挑战。阿里云的 PolarDB 是一种兼容 MySQL、PostgreSQL 和高度可扩展的关系型数据库服务,它通过其独特的架构设计,能够有效地支持海量数据的存储和查询需求。
29 0
|
13天前
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
|
3天前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
33 11
|
8天前
|
存储 分布式计算 大数据
MaxCompute 数据分区与生命周期管理
【8月更文第31天】随着大数据分析需求的增长,如何高效地管理和组织数据变得至关重要。阿里云的 MaxCompute(原名 ODPS)是一个专为海量数据设计的计算服务,它提供了丰富的功能来帮助用户管理和优化数据。本文将重点讨论 MaxCompute 中的数据分区策略和生命周期管理方法,并通过具体的代码示例来展示如何实施这些策略。
31 1
|
13天前
数据平台问题之在数据影响决策的过程中,如何实现“决策/行动”阶段
数据平台问题之在数据影响决策的过程中,如何实现“决策/行动”阶段
|
16天前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
20天前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之ODPS数据怎么Merge到MySQL数据库
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。

热门文章

最新文章

下一篇
DDNS